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ABSTRACT

The Naval Weapons Support Center 1s planning to implement a bonus system to
improve the reliability of pyrotechnic devices. The measure of effectiveness that they
wish to use to determine how to award bonuses is the reliability of pyrotechnic devices.
The data available to estimate this reliability is based on the current sampling inspection
plan in which devices are tested in different environments. The models which include
both dependence and independence assumptions between the outcomes of these tests are
implemented and estimates of overall reliability along with 95 % lower confidence bound
are obtained. The 95 % lower confidence bounds are found by bootstrapping. Using
these estimates, models for making the decision to award bonuses are discussed and

studied using Monte Carlo simulation .
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I. INTRODUCTION

A. BACKGROUND

Naticns spend a lot of money to establish a strong defense network. It is essential
that nations buy reliable weapons and ammunition from the contractors. To ensure re-
liability, contracts must include a lot acceptance sampling plan that specifies the minimal
acceptable quality.

The Naval Weapons Support Center purchases pyrotechnic devices. Unless other-
wise specified in the contract, the supplier i1s responsible to see that his devices meet all
ispection requirements as specified. The inspection requirements are particular to
characteristics of each type of device and are specified on the reference drawings and
supplemental quality assurance provisions of the contract. Any testing that needs to be
done on these devices is explained in this contract.

When nations buy weapons and ammunition from the same contractor, they would
like the quality to improve over time. As contracts are now written, contractors need
only to satisfy the requirements of the sampling inspection plan for lot acceptance.
Under such contracts, contractors have no incentive to improve the quality of items they
provide. For this reason, to improve quality, The Naval Weapons Support Center has
decided to implement a bonus system. The contractor will be awarded a bonus if the
result of the sampling inspection exceeds the minimum requirements for lot acceptance.

The Naval Weapons Support Center will begin to implement a bonus system for
pyrotechnic devices in FY91. The data available to make the decision whether to award
a bonus is based on the current sampling inspection plan. This plan is a series of de-

structive tests in different environments. The purpose of this thesis is to provide the




Naval Weapons Support Center with guidance for implementing a bonus system for
pyrotechnic devices. Once implemented, the pyrotechnic bonus system will serve as a

prototype for bonus systems for other devices.

B. PYROTECHNIC DEVICE RELIABILITY

A pvrotechnic device 1s a chemical and grenade ammunition. There are three cate-
gories of pyrotechnic devices. The three categories are: Aerial display, Surface display
and Grenades ([Ref. 1: pp. [-2[. Samples of the Pyrotechnic devices are exposed to
various environments and then activated. The critena for successful activation depends

on the tvpe of device :

1. Aerial display (Ground signals, flares, atrburst simulators, sub signals, signal Kits,

etc.)

“Successful activation means that the item will, after simulating user environment,

successfully .....”
e launch,
¢ have proper separation / signal ignition,
e reach desired altitude at correct angle,
¢ have proper parachute deployment,
e have proper display color,
¢ have proper display time,
¢ have no subsequent interference with next item.
2. Surface (Ground or Water) display (flare, hand-held signals, smoke / illume

grenades, simulators, etc.)

“Successful activation means that the item will, after simulating user environment,

successfully ....”




- ———

¢ have signal ignition with proper display,
e have proper display,
¢ have proper display time,

3. Grenades (fragmentation, defensive, white phosphors, etc.)

“Successful activation means tha* the item will, after simulating user environment,
successfully ....”
¢ function (high order detonation following delay),
¢ have proper dissipation of payload,

® have completely consumed pavload.

C. PYROTECHNIC DEVICE RELIABILITY PROBLEM

Samples from any large lot of pyvrotechnic devices submitted by a manufacturer must

activate after exposure to different environments. These are;

1. Manufacturer Environment,

tJ

Temperature and Humudity Environment,

Vibration Environment
’

(@F]

4. Altitude Environment.

All items tested are subjected to the manufacturer environment. However items are only
subjected to one of the three remaining environments : Temperature and Humidity,

Vibration or Altitude.

The sampling plan consists of using four distinct samples from a lot that can be as-
sumed (approximately) statistically independent. The items tested in each sample are

also assumed to be independent. According to the sampling plan;

¢ 20 items are subjected to the Manufacturer Test,




® 20 items are subjected to both the Temperature and Humidity Test and Man-

ufacturer Test,
e 32 ijtems are subjected to both the Vibration Test and Manufacturer Test,

® 20 items are subjected to both Altitude Test and Manufacturer Test.

A total of 92 items are tested.

Acceptance criteria for each test are :

[. Manufacturer Test : Of the 20 items; if no more than 1 fails to activate, the lot
passes.

2. Joint Temperature and Humidity and Manufacturer Test : Of the 20 items; if no
more than 1 fails to activate, the lot passes.

3. Joint Vibration and Manufacturer Test : Of the 32 items; if no more than 2 fails
to activate, the lot passes.

4. Joint Altitude and Manufacturer Test : Of the 20 items; if no more than 1 fails to
activate, the lot passes.

The number of failures for these tests will be summarized by the vector :

( FOM, FOTH, FOV, FOA ) (1.2)

where
¢ FOM represents the number of failures after the manufacturer test,

¢ FOTH represents the number of failures after both the temperature and humidity

and manufacturer tests,

¢ FOV represents the number of failures after both the vibration and manufacturer

tests,

¢ FOA represents the number of failures after the altitude and manufacturer tests.




For example,
(1, 1,2,1). (1.2)

represents, 1 failure in manufacturer test, I failure in the joint temperature and humidity
and manufacturer test, 2 failures in the joint vibration and manufacturer test, and 1
failure in the joint altitude and manufacturer test. It is also the maximum number of
failures in each test that still leads to lot acceptance.

The marginal distributions of the number of failures in each of the above tests are
modeled by binomial distributions. There are 24 possible realizations of the sampling
inspection; ranging from the best case with no failures to activate, to the worst case with
I, 1, 2 and 1 devices failing to activate in these tests manufacturer, temperature and
humudity, vibration and altitude respectively. These cases are tabulated in Table 1.

To award bonuses we need one measure of effectiveness for pyrotechnic devices that
can be estimated from the available data. Ideally, this measure is the reliability of the
device. However, because each of the tests are destructive, there is no one natural defi-
nition of reliability for these devices. To be on the conservative side, we define the reli-
ability of a device to be the probability that the device will activate after exposure to all
of the environments. It is not easy to estimate this reliability from the sampling plan
data. This data is incomplete in the sense that we have limited information about the
joint probability of activation after exposure to more than one environment. To try to
compensate for this lack in the data, we will use models for the joint distribution of
( FOM, FOTH, FOV, FOA ) that specify particular types of dependence between the

events that a device activates after exposure to different environments.




POSSIBLE CASES

Table 1.

FOA

FOV

FOTH

FOM

CASE #'S

(]

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24




Using these models and based on sampling plan data, estimates of the overall reli-
ability along with lower confidence bounds are obtained. These will be used to imple-
ment the bonus system for pyrotechnic devices. We compute the maximum likelihood
estimator ( MLE ) of the reliability by maximizing the appropriate likelihood; lower
confidence bounds ( LCB ) are found by bootstrapping. The MLE’s are computed under
both independence and dependence assumptions. The estimation procedures assuming
independence are described in Chapter 1. In Chapter 11 we incorporate dependence
by fiting a Log Linear Model to our data. The MLE’s from Chapter II and Chapter
I11 lead to inappropriate results for this for this problem; thus in Chapter 1V we consider
alternate and very conservative estimates of reliability. Using the estimates of Chapter
IV, we investigate a sequential scheme for making the decision to award bonuses in
Chapter V. The results of simulations are presented in Chapter VI. Finally, conclusions

and recommendations are given in Chapter VII.




II. THE ESTIMATION OF THE MAXIMUM LIKELIHOOD ESTIMATOR
(MLE) OF THE RELIABILITY WITH INDEPENDENCE ASSUMPTION

A. DEFINITIONS

We will say that a device survives environment E , if it is still potentially capable of

activation after exposure to environment E . Let,
e F, be the device activates after exposure to Manufacturer environment,

e E, be the device activates after exposure to Temperature and Humidity environ-

ment,
* [ be the device activates after exposure to Vibration environment,
e [, be the device activates after exposure to Alutude environment.

We define the reliability of device as below,
R=P(ENENENE). (2.1)

In this formula, R means the probability that a device activates after exposure to four
environments. We will estimate R for each of the 24 cases which lead to lot acceptance.

Let O, = P( E,) be the probability that device activates after exposure to environ-
ment i, fori = 1, 2, 3, 4. In the acceptance sampling plan several of the items must
activate after exposure to a joint manufacturer and another environment. To avoid
confusion we will denote tests 1 through 4 as the manufacturer test, the joint temper-
ature hurmidity and manufacturer test, the joint vibration and manufacturer test and

joint altitude and manufacturer test respectively.




Let

R, = P(E) = ¢ (2.2)

and let

R =P(ENE). (2.3)

i

Here R, is the probability that a device survives test 1 fori = 1, 2, 3, 4. The simplest
iy model is to assume that E,, E,, E,, E, are independent. If we assume that E, ..., E,

are independent then
R, = Q0 (2.9)
fori = 2,3, 4 and the reliability of device is,

R= 00,004 (2.5)

B. THE LIKELIHOOD EQUATION
Let
e X be the number of devices that activate after test i,

® 7 be the number of items given test 1.

Then X is binomial with parameters R, and n, for 1=1, 2, 3, 4. Under the assumption

. of independence the joint likelihood function of observing X, = x,, ..., X, = x1s
4
n.
L(x,,x,x3,% 1R ,R,,Ry,R,) = ﬂ( ‘) RI(1=R) ™™ (2.6)
i=1 &
9




with constraints :

0< R, <R,

Our aim is to maximize this likelthood function subject to the constraints that

(R, R, Ry, Ry)e S where

S = {(RLR2'R3,R4): 0 < Rl < l, O

A
>
A
o
|
N
w
;&Y

From the equation (2.6), we see that maximizing L is equivalent to maximizing

4
1=Z{(X.- InR;) + (7 — x;) In(1-R;)}, (2.7)
i=]

where the constant multipliers <n) fori = 1,2, 3, 4 have been dropped ( because they
do not effect the maximization pﬁocedure ) and the natural logarithm of L is taken.

We first show that [/ is a concave function. To show that [ is a concave function,
we can show - [ is a convex function. According to Theorem 3.3.6 [Ref. 2: p. 92],
by looking at its Hessian matrix, we can learn whether function is convex or not. Ifits

Hessian matrix is positive semi-definite at each point S then function ! is convex. To

create the Hessian matrix, we must calculate partial derivatives of the function - /,

- = -+ (2.8)

10




_ (2.9)
&l
— = BN 2.
FRR 0 1%, (2.10)
Then, the deternunant of the Hessian is:
4
|n|—ﬂ(x" T (2.11)
R‘2 l - Rlz . -
i=1

Clearly we can see thatfor0 < R < 1 1= 1,2,3,4, | H |isalways positive. Because
- 1 1s continuous, this implies that - [ is a convex function on S. As a result of this,
[ 1s a concave function.

We note that with the constraints on the probabilities R,, ..., R,, there does not
in general exist a closed form solution to MLE. However, with only 24 realizations of
x,, ..., x, of interest, the estimated relabilities for these 24 cases can be found with

some rather tedious but straight-forward computations.

C. COMPUTING THE MAXIMUM LIKELIHOOD ESTIMATORS AND LOWER
CONFIDENCE BOUNDS
Because [ is concave over the convex set S, if the maximum occurs in the interior

of S, it is a unique maximum and is given by

A X;

fori1 =1, 2, 3, 4. where

11




fori = 2,3, 4.
In this case the MLE’s for 0,1 = 1,2, 3, 4 are
A X]
Q= (2.13)
X;
A ;.
0 = X, (2.13)
ny

for i = 2,3, 4. Finally we can estimate the reliability of the device as

R = Q1 Qz Q3 Qa- (2-15)

Table 2 summarizes the cases for which the MLE’s can be found using (2.12) -
(2.15). When the maximum falls on the boundary of S, there is no explicit expression
for the MLE of (R,, ..., R,). These are the cases with the exception of (112 1)
which have one failed item in the manufacturer test. This implies that Ié, will be less
than 1.0 . To find the MLE, we find the maximum of ( R,, .., R,) on each of the
boundaries, compute [ for each of these and let the MLE be the one with the largest
value of /. It is clear that in most cases several of the boundaries can be eliminated

from consideration, simplifying computation considerably.

12




Table 2. EASY AND HARD CASES

EASY CASES HARD CASES
(o0 0 0 0) (1 0 0 O
(0 0 0 1) (1 0 0 1
(0 0 1 0) (1 0 1 0
(0 1 0 0) (1 1 0 o0
(0 0 1 1) (1 0 1 1
(0 1 0 1) (1 1 0 1
(0 1 1 0) (1 1 1 0
(0 0 2 0) (1 0 2 0
(o0 1 1 1) (1 1 1 1
(0 0 -2 1) (1 o 2 1
(0 1 2 ©0) (1 1 2 0
(0 1 2 1)

(1 1 2 1)

D. EXAMPLES

Easy Case

In this example our failure vector is,

13




According to this failure vector, we can write our likelthood equation by using equation

(2.6) to get
L=RC(1 =R PR (1 -R VR (1 =R VR (1 -R,) (216
0 <R £1, 0 <R <R,

for1 = 2, 3, 4. From the likelihood above;

Ry= 3+ = & = 10000
Ry= - = 3 = 09500
Ry = 2 = 32 = 09375
R, = ;—: - —% = 0.9500. 2.17)

Results imply that all Ié,.‘s fori = 2, 3, 4 are between 0.0 and 1&,, which means that

constraints are met. Now we can estimate Q,’s using equations (2.13) and (2.14).

0, = 1.0000

0, = &97592 = 0.9500

0, = 2B~ 09375 (2.18)
0, = 2900 _ 49500

1

And finally, rehability of the device can be estimated by using equation (2.15)

14




R = (1.0000)(0.9500)(0.9375)(0.9500) = 0.84609375 . (2.19)

2. Hard Case

In this example our failure vector is

According to this failure vector, we can write our likelthood equation by using equation

(2.6) as
L=R°(1 =R YR (1 —-R PR °(1-R VR (1 =R (220
0 <R <1, 0c<R <R

fori1 = 2, 3,4. From the likelihood above;

- = 2% = 09500

;_2 - g—g = 1.0000

= a2 = 09375

- = -%% = 0.9500. (2.21)
As vou see from the above —J,% > i;:— thus, the MLE does not lie in the interior of S.

We begin by considering the boundary

15




R|=R2=R3=R4.

The likelihood equation on this boundary 1s,

L=R(1-R)

A

0 < R

From the likelihood equation,

5 88
92

Then value of the likelthood with these estimated R< 15
_ 88 88, 4 a4 o 107
L—(92)(92) S04 v 107,

For the boundary

the likelihood equation is,

L=R’(1~R PR’ ’(1-R)

69

Ri=R =R =2 20958 R = == =

72

16

Ry =R, =R, = R, = == =0.9565.

(2.23)

(2.24) .




and the value of the likelihood with these estimated Rs 1S

= ( % 1 ( —73—2- P ( ;—g )9 ( 7]0' )= 0.723 x 107, (2.25)
For the boundary
R, =R,=R,, Ry <R,
the likehhood equation is,
L=RE(1-R VPR °(1-R ) (2.26)
0 < R <1 0< Ry <R.

From the likelihood equation,

Then value of the likelihood with these estimated Rs is
~ (38 8 2 2030 po, 2 2 -7
L—(60)(60)(32)(32)—0.876x10. (2.27)

For the boundary

the likelihood equation is,

17




L=R®(C1—-R )RY (2.28)

Clearly L 1s maximized on the boundary of the constraints (2.28), 1.e. on another of the

boundaries of S thus we can eleminate this case from consideration. For the boundary

R1=R2,R3SR1,RASRI,

the likelihood equation is,
L=R°(1—-R )R (1 ~-R VR (1~R) (2.29)
0 < R <1,0< R <R/ ,0 < Ry <R.

From the likelihood equation,

R, =R = 22 09750 R, = 2% — 09375 R, = .2 = 0.9500.

40

Then value of the likelihood with these estimated Ié,’s 1s
_ (39 e 1y 30 w00 2 o 19 e 2 i _ =

Quick inspection reveals that the remaining boundaries can be eliminated from consid-

eration.

After boundary analysis, we can see that equation (2.30) gives us the maximum

likelihood value. Thus the MLE’s for R,, R,, R,, R, are

R, = 0.9750




R, = 0.9750
R, = 0.9375
R, = 0.9500.

Now we can estimate Q,'s with equations (2.13) and (2.14)

Q, = 0.9750
_ 09750 _
Q= (o750 = 10000
09375 (2.31)
0 = 0.9750 0.9615
_ 09500 _
Qs = 09750 = 0.9744 .
And finally reliability of the device can be estimated by using equation (2.15)
R = (0.9750)(1.0000) (0.9615)(0.9744) = 0.91346100. (2.32)

We computed MLE’s with a FORTRAN program MLEA given in Appendix
A. After 24 replications of this program, we can estimate Ié, ‘s for 1 = 1, 2,3, 4 for each
of the 24 outcomes of the sampling plan that lead to lot acceptance. These are given in
Table 3, R is given in Table 4.

We compute lower confidence bounds for each possible case by bootstrapping.
The bogcistrap can be used to produce approximate confidence intervals in an automatic
way. There are several ways to set approximate confidence intervals with bootstrapping.
These are the percentile method, the standard method, the bias-corrected percentile
method and the nonparametric method [Ref. 3 : pp. 67-70]). Let 8 be an unknown pa-

rameter with estimator 8. To bootstrap, samples are generated using 6 in place of the
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unknown parameter §. For each of these samples an estimator 0" is computed. We
define G (s) to be the parametric bootstrap cumulative distribution function of 9 1.c.
é(s) 1s the empirical distribution of the 6s. All methods mentioned above use
percentiles of G to define the confidence interval. They differ in which percentiles are
used. The percentile method was used in our calculations.

If we use the notation 6 (a) for the level « endpoint of one sided lower confi-

dence 1nterval for 8 , then

P(O(a)< 8] = «. (2.33)
An estimate of 6 ( « ) from the bootstrap cumulative distribution is given by
8(a) = G ' (a). (2.34)

To get LCB’s for R, for each of the 24 realizations of the sampling plan , we
generate bootstrap samples of random failure vectors, in which failures come from in-
dependent binomial distribution with parameters ( n, , é,) fori = 1, 2,3,4. Thisis done
using the FORTRAN program RANVEC [Ref. 4] in Appendix B. We generate 5000
failure vectors for each case. And then we estimate R ‘s from each of the 5000 failure
vectors by the means of the program MLEA. The next step is to compute the order
statistics of R s from R, to I%m,. We get the parametric bootstrap cumulative distrib-
ution function ( i.e. the empricali distribution of Iél ey ﬁ’,m ) with this computation.
This is done using the FORTRAN program SORT in Appendix C.

Finally we can get the 95 % lower confidence bound using equation (2.34) from
this routine. Reliabilities and 95 % lower confidence bounds are listed in Table 4. Re-

sults in Table 4 are given in descending order and R’s and LCB’s are not ordered as we

expected them to be. For example, the failure vector that has the maximum number of
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failure in each test is in the middle of the table with respect to R. It has also a bigger
95 % LCB than the failure vector that has a total of 3 failed items in each of the joint
tests. These results are counter-intuitive because we expect that more failures indicate
a lower overall reliability. This is reasonable because 1t 1s hkely that a device that is
poorly constructed is more likely to fail in any of the four environments. From the re-
sults in Table 4, 1t is clear that an attempt to model dependence must be made in order

to get believable estimates of R.
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Table 3. TEST PROBABILITIES ( A)

A

A

A

A

CASE R, R, R, R,
(0000) 1.0000000 1.0000000 1.0000000 1.0000000
(0001) 1.0000000 1.0000000 1.0000000 0.9500000
(0010) 1.0000000 1.0000000 0.9687500 0.1.00000
(0100) 1.0000000 0.9500000 1.0000000 1.0000000
(1000) 0.9891304 0.9891304 0.9891304 0.9891304
(0011) 1.0000000 1.0000000 0.9687500 0.9500000
(0101) 1.0000000 0.9500000 1.0000000 0.9500000
(0110) 1.0000000 0.9500000 1.9687500 1.0000000
(1001) 0.9861111 0.9861111 0.9861111 0.9500000
(1010) 0.9833333 0.9833333 0.9687500 0.9833333
(1100) 0.9861111 0.9500000 0.9861111 0.9861111
(0020) 1.0000000 1.0000000 0.9375000 1.0000000
(0111) 1.0000000 0.9500000 0.9687500 0.9500000
(1011) 0.9756000 0.9750000 0.9687500 0.9500000
(1101) 0.9807692 0.9500000 0.9807692 0.9500000
(1110) 0.9750000 0.9500000 0.9687500 0.9750000
(0021) 1.00600000 1.0000000 0.9375000 0.9500000
(0120) 1.0000000 0.9500000 0.9375000 1.0000000
(1020) 0.9833333 0.9833333 0.9375000 0.9833333
(1111) 0.9615384 0.9500000 0.9615384 0.9500000
(0121) 1.0000000 0.9500000 0.9375000 0.9500000
(1021) 0.9750000 0.9750000 0.9375000 0.9500000
(1120) 0.9750000 0.9500000 0.9375000 0.9750000
(1121 0.9500000 0.9500000 0.9375000 0.9500000
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Table 4. RELIABILITIES AND 95 % LOWER CONFIDENCE BOUNDS
(A)
VECTOR A VECTOR | 95 %LCB
(0000) 1.0000000 (06000) 1.0000000
(1000) 0.9891304 (0010) 0.9062500
(0010) 0.9687500 (1000) 0.9000000
(1010) 0.9687499 (0020) 0.8750000
(0001) 0.9500000 (1010) 0.8550000
(0100) 0.9500000 (0001) 0.8500000
(1001) 0.9499999 (0100) 0.8500000
(1100) 0.9499999 (1001) 0.8282812
(1011) 0.9439102 (1100) 0.8258822
(1110) 0.9439102 (0110) 0.8234775
(1111) 0.9385999 (0011) 0.8234375
(0020) 0.9375000 (1020) 0.8125000
(1020) 0.9374999 (1011) 0.8015624
(1121) 0.937499 (0101) 0.8000000
(0011) 0.9203125 (1110) 0.8000000
(0110) 0.9203125 (0120) 0.7875000
(1101) 0.9201959 (0021) 0.7749999
(1021) 0.9134614 (1101) 0.7749018
(1120) 0.9134614 (1111) 0.7649999
(0101) 0.9025000 (1021) 0.7647058
(0021) 0.8906249 (1120) 0.7614843
(0120) 0.8906249 (1121) 0.7505192
(0111) 0.8742968 (0111) 0.7499999
(0121) 0.8460937 (0121) 0.7171874
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III. LOG LINEAR MODEL WITH DEPENDENCE ASSUMPTION

A. BACKGROUND

Modeling the outcomes of the various environmental tests as independent is clearly

inappropriate. However, the nature of the acceptance sampling plan makes it impossible

to estimate the reliability of the device ( 1.e. the probability that it would activate after

exposure to all four environments ) without some assumptions about the dependence

between outcomes of various tests.

pyrotechnic device reliability with a log linear model.

Thus, our second approach is to model the

The results of our test series create a ( 2 x 2 x 2 x 2 ) contingency table. Let p

represent passing a test and f represent failing a test.

Table S. CONTINGENCY TABLE STRUCTURE FOR TEST SERIES
Passed Failed
Manufacturer Test Manufacturer Test
Passed Failed Passed Failed
Tem.&Hum. | Tem.&Hum. | Tem.&Hum. | Tem.&Hum.
Test Test Test Test
Passed
Altitude Myppp My My, Miypp
Passed Test
Vibration -
Test F allled
Altitude Mopor M,pr Mppr Myypr
Test
Passed
) Altitude M,psp My, My, My,
Failed Test
Vibration -
Test Failed
Altitude Mppyy M,y My My
Test
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The results of our tests can be thought of as censored data from a hypothetical
(2X2X2X2)contingency table (See Table 1) . The frequency in each cell of this table

is
“[ijk{' (l-.[a k)1)€ {p*f}.‘)

the number of devices out of 92 which would have result 1 in environment | (manufac-
turer), result j in environment 2 (temperature and humdity alone), result K in environ-
ment 3 (vibration alone), result / in environment 4 (altitude alone).

This is a hvpothetical table, because if a device was exposed to all four environments
and then failed to activate, there would be no way to discern which combination of the
four environments caused failure. The data from the acceptance sampling plan can be
thought of as censored data fromsucha (2X 2 X 2 X 2) contingency table. As an
example, a device that is given just the manufacturer test belongs in one of the cells
(p, 3k, 0) where (3,Kk, () e {p, [}, because it is not clear what would have happened
to it had it been exposed to the other three environments.

Using a log linear model under independence, the expected value of each cell fre-

quency is

i 2 k) 4
E[M,jk[] —_ e}l+1,+ll+lk+/1, (3.|)

where 1, |, k, { = p,fand

o= — 7 (3.2)

fori1 = 1,2, 3, 4. Here the parameter u represents the overall effect and the parameters
A, represent the effect of passing environment 1. [t is simple to show that the log lincar

model (3.1) is equivalent to the independence of the environments [Ref. 5: pp. 25-46].
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On a logarithmic scale, the independence relation is equivalent to the additive re-

lationship. As an example,

log M

51 2 3 -4
opop = B Ayt A+ A+ A (3.3)

Log linear models, which take into account dependence include extra interaction terms.
Because of the extreme amount of censoring, we will only consider models with two way

interaction terms of the type.

1 2 3 4 12 13 14 23 24 34
EL My ] = H AT B A A AL A+ A A (3.4)
- 4 U - -

where 1,),k, I = p,f,

o=~k (3.5)
fori = 1,2, 3,+and
Mo= = <2 = — i (3.6)
fori, ), = 1, 2,3,4. As an example;
E[ Mpppp] _ eu+1;+A:+A:+A:+A},:+A}:+A;:+Af:+1:+1:. 3.7)

The censored data does not tell us much about partial association between pairs of
tests. For this reason, we assume that partial associations between any pair of tests are
all the same. Let 6 be the partial association between tests. Then we can reformulate

equation (3.7) as follows:

1 2 3 4
E[Mp #+l’+1’+1’+1,+60. (38)

ppp] =€
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The MLE's for the expected number of devices in each cell ( or equivalently the
MLE’s for the parameters ) can not be found explicitly. The EM Algorithm ( Expecta-
tion - Maximuzation ) will be used to approximate the MLE’s of the expected number

of devices 1n each cell.

B. EXPECTATION MAXIMIZATION ( EM ) ALGORITHM

A general method of maximum likelthood estimation from incomplete data is the
EM Algorithm. The expectation maximization algorithm is an iterative procedure where
each stage consists of:

= an cxpectation step ( E ) followed by

® 3 maximuzation step ( M ).

This algorithm is generally used to compute maximum likelihood estimators in in-

complete data problems. In the application of the EM algorithm we:
® replace mssing values by their estimated expected values given the incomplete data
® estimate parameters
® reestimate the missing valucs assuming the new parameter estimates are correct
® reestimate parameters

and so forth, iterating until convergence {Ref. 6: pp. 127-141]. This iterative algorithm
works as follows in pyrotechnic device problem.
I. [Initialization
The algorithm requires initial guesses for the parameters of the log linear model
cell frequency in contingency table. It uses initial guesses and calculates initial cell
probabilities. We will get our initial guesses by first fitting a log linear model under in-

dependence.
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2. Iterations
= Expectation Step
EM Algornithm estimates expected cell frequencies given the data by using the
most current estimates of the parameters. It compares these estimated expected cell
frequencies with the previous estimates. If the differences between these two estimates
are small enough, then the EM Algorithm has converged. We then accept the final es-
timates of cell frequencies as MLE, so we can easily calculate cell probabilities.
= Maximization Step
If the algorithm has not converged, then it starts to estimate new parameters for
the log linear model using expected cell frequencies from the E step as if there were ac-
tual data available. Estimation is done by maximizing the likelihood using an iterative
Newton-Raphson method. The estimated parameters from this step are than used in the

next E step of the EM algorithm.

C. CALCULATIONS

We apply the EM algorithm for each realization of the failure vector ( FOM,
FOTH, FOV, FOA ). During the maximization step of the EM Algorithm, we use the
Newton-Raphson procedure which is descnbed by SAS, [Ref. 7: pp. 190-212]. We first

describe the M step using as an example the following failure vector.

(112 0)

» Maximization Step
We start with initial guesses (IG) for M,/’s. These are the conditional expected
values provided by the previous E step. For example, initial guesses for the failure vector

above, are shown below.
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“”pppp
"wpppf [ ]
Mo 83.08
\ 0.1
Sleelf 3.36
“[p«"pp 0.1
»]

My 6211
My, 0:1
M

IG = VW G = ?‘11- . (3.9)
~{ippp "0 13
Mippr ol
‘”fnfp 0.1
My, 0.1
~wff op 0.1
, 0.1
My 0.1
My ] ]
My,

From these, we can compute the proportion of observations which fall into each cell as:

M,

ppop
92
Mooy [ 0.9030
92 0.0011
Mowsp = | 00365 (3.10)
92

>
I

: | 0.0011
Mygr
92

We will use P to get MLE’s for the parameters of the log linear model. Qur log lincar

model which includes two way interactions can be written as
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[ 1og P -

og P 11 1 1 16 :
0g
il 11 1 1 —10 ;
log Ppppp = o by = p (3.11)

lOg Pff/f J L

where y7 = (pu, 4}, 22, A, 2%) is the parameter vector and p is normalizing constant
required by the restriction that the probabilities sum to 1 and where P, is the proba-

bility corresponding to the (ij & /)* cell in the hypothetical contingency table. We can

derive from equation (3.11)

log Ppppp BN

log P 1 1 1 1 6
pref 1 1 1 -10 ,

log Ppppy | = R N R B (3.12)
. -1 -1 -1 -1 6 l

lOg PM L

where 7 = (A}, A2, A3, 2%) is the parameter vector and J is normalizing constant re-
quired by the restriction that the probabilities sum to 1. Then, to use the SAS proce-

dure, we rewrite log P,,,,,

log P

1A

., log Py, as the 15 logits, F; = (log P,,,/ log P,,),

.» Fis = (log P,/ log Pg) so that

" F ] log Ppppp
F, 0100 —I Pref
F(P)=1| - = o log Pppp, (3.13)
F.s 0000 —I :
L . longfff
L J
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where P = (P,,,, P,

prop?

tained

spefr

F 2222
F, 2220
F(P)=1| - = .
Fis 0002

.» Py,). Using equations above the following result is ob-

B. (3.1

The design matrix (X) of this problem, from the equation (3.14) is as follows:

SO O OO OO NNNNRNNNN

COONNVNRNNOOOONNNDW

CPVNRNOONINOORNNOONN

NONONCOCNONODNONON
&

(3.15)

In the application of Newton-Raphson Method, we use the variance and covariance

matrix S of F( i’). It’s inverse is given by

STY(P) =

Povow — Propp — Fooer X Popor
2

~ Poppp X Poppr Poppr — Ppppyr

= Popop % Prpp = Poppy X Ppp
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= Ppppr X Ppyp

= Popop X Prpy

: . (3.16)

2
Pfffp - Pfffp




The first estimates of parameters for the Newton-Raphson procedure are calculated

as follows:
by = [XTST (P)x1 ' [XTST(P)F(P)1]. (3.17)

where S-! and F are estimated using the proportions in the vector P. We estimate the

reduced logit response functions using the equation

Fy = Xb,. (3.18)
From F, we can compute the updated estimates of P , P, ., ..., Py, Let
M= (I,(1), I,(1), ..., M, (1)) be the vector, which contains these estimates of
the cell probabilities. The value of the log likelihood evaluated at IT 1s
16
LHE = ) x log T (i) (3.19)

i=1

where x, is the number of items in cell i with respect to probability in IT.

We estimate parameters iteratively until the difference between last estimate and
previous is small enough. At each iteration we update the inverse of variance and
covariance matrix with probabilities of IT from the previous iteration and we do fol-

lowing matnx computations.

C=Xx"s'(mx
G=X"[920x (P-T11)]

(3.20)

Let b, be the next cstimate of parameters f in the i th iteration. Then b, as follows:

bi=b_,-6CG (3.21)

i—1
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where 6 < | is a constant supplied by the user.

We get first cell expectations from initialization. The failure vector, which is defined

at page 5, has initial guesses for cells which are shown in equation (3.9). After the first

application of Newton -Raphson Algorithm, we have following initial cell expectations

( CE).

CE

s Expectation Step

82.4278259
0.7278117
3.1047230
0.1208856
2.0790358
0.0809494
0.3453168
0.0592893
2.0268116
0.0789160
0.3366428
0.0578000
0.2254283
0.0387050
0.1651089
0.1250073

(3.22)

The conditional expected frequency for each cell expectations are calculated using

the estimated parameters of the log linear model from the previous M step. Some of the

cell expectations formulated below

E [MPPPP

| (FOM, FOTH, FOV, FOA)] = (20 —

+ (20 —
+ (32 -
+ (20 —
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FOM)xP(pppplp...)
FOTH) x P(pppplpp--)(3_23)
FOV)xP(ppprlp.p.)
FOA) xP(pppplp-.p)




E[ M| (FOM,FOTH,FOV,FOA)] = (20 — FOM)x P(pfpflp...)
+ (FOTH)x P(pfpfipf..)
+ (32 - FONYxP(pfrfip.f.)
+ (FOA)x P(pfpflp..0)

(3.24)

where . ” represents either a pass or fail. For example,

P(pppplp...)is the probability that device passes all environments given that it
passed manufacturer test.

P(pppplpp..)isthe probability that a device passes all environments given that
it passed manufacturer test and temperature-humidity environment.

The conditional probabilities are computed from the estimated cell probabilities

from the previous M step. As an example, we have following failure vector,

(1 1 2 0)

Then EL M

pPPP

(1, 1, 2, 0) ] is calculated as follows:

' 82.4278259
P(pppplp...) = $5.9458395 = 0-9267193

82.4278259

It

82.4278259
P(pppplp.p.) = m 0.9661516

82.4278259
P(pppplp..p) = 579569015 = 0.9371388,

where the numbers come from (..22) the estimated cell expected values after from the

previous M step. Thus,




E[M,,,1(1, 1,2 0)] = 83.4654163

The remaining 16 conditional expectations are calculated similarly. Then we com-
pare these expectations with previous expectations. If the difference between compared
expectations are small enough then EM Algorithm 1s assumed to have converged.

When EM Algorithm converges, we can estimate reliability of device ( R ) after
exposurc all four environments as

A
5 E[ Mpppp ]

R = 90 (3.23)

For example, for the failure vector above, after 27 iterations, we obtain

E[ M, ] = 84412714,
and
p_ 84412714 _
R = =535 = 0.9175259.

D. INITIAL GUESS PROBLEM

The EM Algorithm uses an initial guess vector as in equation (3.9). We use the
independence assumption as described in equations (3.1), (3.2) and (3.3). The following
procedures are used during the application of EM Algorithm to the log linear mode! with
the independence assumption.

We have still an initial guesses proble.n for parameters in the log linear model with
the independence assumption. For this reason, we do some calculations to find initial
guesses for the parameters. Moreover, one can choose random initial guesses for the

parameters too.
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Assume that we have the following failure vector,

In this procedure we divide the number of devices which pass the manufacturer test
by the number of cells which include items that have passed the manufacturer test. In

this example, we can calculate M, , as follows:

e [ —1202 ] = 2.375 items for manufacturer test

» [ 55 1 = 2500 items for temperature and humidity test
1.0 . . .

e [ 50 ] = 0.125 item for vibration test
0.0 ) .

o [ 80 7 = 0.000 item for altitude test

finally the expected number of device for this cell is,

M, = 5.000.

After computing M,,, for each cell using the same procedure above, we can group these

cells to estimate M, , M,

o » My, My as follows:

* XM, =M,
* XMyp = Myp
* IMpu = My
* XMp = My

where k, { = p,f
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In this example,

Table 6. GRUOPED DATA FOR INITAL GUESS CALCULATION

TERMS ESTIMATED VALUES
Mo 32.500
M, 22.500
M 23.500
Mo | 13.500

By combining the parameters u and 4}, we have four equations and four unknown

parameters. We can easily solve for the parameters from the initial guesses.

Table 7. ESTIMATED PARAMETERS FOR INITIAL GUESS

TERMS ESTIMATED VALUES
u+ A -1.97

iz 1.08

2 1.08

A 0.56

Finally, we can split the sum of the 4 and 2! into two parts. One possibility is to
divide the sum by two assigning half to x4 and haif to 4}. Results using a random initial
guess and the above procedure for an initial guess are very close. Calculation of initial
guess parameters are done by the FORTRAN program INITIAL in Appendix D and

the FORTRAN program PARAM in Appendix E.
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E. RESULTS

Reliabilities of the pyrotechnic device are calculated by a FORTRAN program
LLMDEP in Appendix F. They are given in Table 8. Results from the log linear model
design with dependence assumption are similar to the first model. We can easily sce
from the previous table that the ordering of the estimates of R is counter-intuitive. We
expect ( 1 12 1) to yield the smailest R rather than an R = 0.934 which is larger than
R for about half of the 24 realizations of the failure vector.

It is clear from these results that this log linear model is inappropriate for modeling
the outcomes of the sampling inspection plan. More realistic models would include
three-way and four-way interaction terms. However, due to the extreme censoring in the
data, we can not estimate R for these models. Moreover, reliabilities of several cases for
even this model were not calculated because of computational limitations. Taking the
account of dependence with log linear models 1s clearly not a reasonable approach for

estimating reliabilities from this data.
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Table 8. RELIABILITIES WITH LOGLINEAR MODEL
FAILURE VECTOR R
(06000) 1.0000000
(1000) 0.9887247
(1010) 0.9693505
(1001) 0.9518477
(1100) 0.9503552
(1110) 0.9457148
(1011) 0.9456805
(1111) 0.9399773
(1020) 0.9374950
(1121) 0.9336501
(0011) 0.9255090
(0110) 0.9255087
(1101) 0.9246104
(1021) 0.9175486
(1120) 0.9175295
(0101) 0.9089977
(0021) 0.8978485
(0120) 0.8978109
(0111) 0.8825021
(0121) 0.8584540
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IV. WORST CASE SCENARIO

A. ASSOCIATION ANALYSIS
In the inspection sampling plan, failures are not assigned to an individual failure
mechanism except for the manufacturer test. For example, from the following failure

vector.

We know that there is at least one failure due to the manufacturing test. There is one
failure from the joint temperature and humidity and manufacturer test, but we do not
know which failure mechanism generated this failure. Items can fail due to a manufac-
turing related failure mechanism or other failure mechanism or both. The worst case is
to assume that the cause of failure is due to all of the failure mechanisms that it was
exposed to.

Let MT represents manufacturer test, TAHT represents temperature and humidity
test, VT represents vibration test, AT represents altitude test,

Because all 92 items are exposed to manufacturer test, the worst case of the failure

analysis of the failure vector above is shown by the following table.

Table 9. FAILURE ANALYSIS

MT TAHT VT AT
# OF TESTED ITEMS 92 20 32 20
# OF SUCCESFUL
87 19 30 19
ITEMS

This ” worst case ” scenario should give us lower bounds for the estimates R of R.




If we calculate the reliability of series system assuming failure mechanisms in test
are independent when in fact they are associated but not independent, then we underes-
timate system reliability. It is reasonable to expect that there is positive dependence
between four tests. If one item fails in manufacturer test, it 1s more likely to fail in other
tests. One way of modelling positive dependance between tests is to assume that tests

are positively quadrant dependent.

Given random variables T,, ..., T,. They are said to be positively quadrant de-
clhoent (PQD) [Kef. 8: p. 33),1f
n
P(Ty<ty, ..., Tho< )2 | [P(T <) @1
i=1
for all (¢, 1, ..., ,) € R~ An equivalent formulation of positive quadrant depend-

enceis T,, T,, ..., T"are PQD iff

P(Ty >0, o, Ty > 0) 2 | [P(T > 1) @.2)
i=1

forall (1, t, ..., t,) € R The proof that (4.1) and (4.2) are equivalent as given in
[Ref. 8: pp. 32-33].

We may take account positive dependence between tests with the PQD assumption.
Let

(4.3)

1, if an item passes environment i
7"‘ =

0, if an item fails environment i
fori = 1,2,3,4. Assumethat T,, T,, T;, T, are positively quadrant independent, i.e.
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P(T <, <o, Ty, Tasu)> | [P(T< 1) (4.4)

or equivalently that

4
P(T,>11,T2>12T3>13,T4>14)2nP(T,.>t,-). (4.5)
i=1

Let R be the probability that an item activates after exposure to all 4 environments.

Then
R=P(Th=1,T,=1,T3=1,T,=1) (4.6)
Using equations (4.4) and (4.5)
R=2PT, =1)PT,=1)YPT;, =1)YKT, =1). 4.7)
Using the notation from the previous section
R= Q03¢ (4.8)

where @, is the probability that an item passes environment i. With the censored data,
we can’t estimate Q,, Q,, Q;and Q, without building a more structured model for
T,, T,, T,and T, One alternative is get a lower bound for estimates of

O, Q,, O, Q.. This is worst case scenario .

B. CALCULATIONS WITH EXAMPLE
Let
® R be the MLE for the reliability of the device.

. Q be the MLE for the probability that an item passes environment i.
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® R be a lower bound of R for rehability of the device.
s Q be a lower bound for the probability that an item passes environment i.

Then according to equation (4.8)

Further we will construct estimates Q of 0 such that
0 < ¢ (4.10)

and then define

R = Hé,.. (@.11)

Thus

x>
A
N

(4.12)
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From Chapter 1, the likelihood of observing X, = x, X, = x, X; = x, X, = x, is

L(x,, X3 x3, X, | R, Ry, Ry, Ry) = H( > (1 = R ™™

>P(T =) P(T,=0)" "™

x ( >P(T-l T, = 1)

(1 -P(Ty=1,T,=1))""" (4.13)

713 x
P(T)=1,T,=1)"
X3

(1 =P(T,=1,T,=1))»™"

ny
P(M=1LT,= l)x“
Xa

x (1 —P(Ty=1,T,=1))*"

X

X

X

X

where x, 1s the number of devices out of n, that activate after test i. If we know why the
device failed for the tests 1 = 2, 3, 4 which include manufacturer test along with exposure

to environment 1 then our likelihood could be written as




n
>P(T‘ = l)x’ P(Tl =0)"l—xl

Xy

< ) >
X2, X210 X220 X3

P(Tl = ], T2 = I)XZP(TI = l, T2=0)X21

L(xy, x3, X3, x4 | Ry, Ry, Ry, Ry) = <

X

X

x P(T,=0,T,=1Y2P(T, =0, T, =0

n3
(4.13)
X3, X315 X32, X33

P(T,=1,T,=1)%P(T,=1,T,=0)™

X

x

P(T,=0,T, =12 P(T, =0, T, = 0)"

< " )
X4y Xg1, X425, Xg3

x P(Ty=1,T,=1yP(T,=1, T, =0y

X

X

P(Ty=0,T,=1Y2P(T,=0,T,=0)%

X

where x, is the number given test 1 which failed due to environment 1 but passed manu-
facturing, x, is the number given test i that passed environment i but failed manufac-
turing and x; is the number given test i that failed both manufacturing and environment
i1fori = 2,34 Notethatn, — x, = x, + x, + x5fori= 2,3, 4.
From this likelihood, the MLE’s of Q, = P(T,= 1) are given by
~ X + (x5 +xy) + (x3+x3) + (x5 + xy)

A = no+ ny+ ny 4+ ny ’ (4.15)
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~ X3 + X322

Q2 - n, ’
~ .r:; + XJz
Q3 = ,]3 ,
~ Xa + X42
Q4 = Ny ‘

However since we do not know the x,’s, we see that

~ X‘+X2+X3+X4
12 n

and

fori = 2,3,4. Let

and

It 1s clear that R is a lower bound for the MLE R.
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(4.19)
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In Worst Case Scenario, we assume that the item, which fails in test 1, fails because

of both manufacturing related failure mechanism and other failure mechanism which is

induced bv the 1 th test environment. With this assumption, the reliability of of device

1s given as follows

A A A A Al
R = Q1 2Q3 4
where
A _ X3 + xz + X3 + Xa
= 92

A XZ

0, = ‘QU

A X3

O = 33

A X

Q4 %

A 20 + 19 + 30 + 19

o = =+ = 0.9456521
0, = —;3— = 0.9500000
0, = 32 = 09375000
O, = -;% = 0.9500000

And finally reliability of the device can be estimated by using equation (4.24)

R = (0.9456521)(0.9500000 ) ( 0.9375000 ) (0.9500000) = 0.8093069
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C. RESULTS

We compute MLE’s with a FORTRAN program MLEB in Appendix G. These
are given Tables 10 and 11.

To get an approximate lower confidence bounds for R using the worst case data,
we bootstrap using the procedure described in the previous chapter. The FORTRAN
program RANVEC in Appendix B is used to generate the 5000 bootstrap samples for
each case. We then estimate R ’s for 5000 failure vectors by the means of MLEB for
given case. The next step is to compute the order statistics of R ’s from Ié, to 1%5000. This
1s done by FORTRAN program SORT in Appendix C. Finally, we obtain the 95 %
lower confidence bound from this routine. Reliabilities and 95 % lower confidence
bounds are tabulated in the following pages. Results of reliabilities and 95 % lower
confidence bounds are given in descending order.

These estimates and LCB’s for R are decreasing with the total number of the failures
out of 92 items tested. This, at least, is consistent with how we believe pyrotechnic de-
vices behave. It should be noted that these estimates are in fact conservative lower
bounds for the time MLE’s under the very weak assumption of PQD. How conservative
these estimates are cannot be determined without more extensive data that allows us to

estimate the degree of dependence between tests.
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Table 10. TEST PROBABILITIES ( B)

CASE R, R, R, R,
(0000) 1.0000000 1.0000000 1.0000000 1.0000000
(1000) 0.9891340 1.0000000 1.0000000 1.0000000
(0010) 0.9891340 1.0000000 0.9687500 0.1.00000
(1010) 0.9782608 1.0000000 0.9687500 1.0000000
(0001) 0.9891304 1.0000000 1.0000000 0.9500000
(0100) 0.9891340 0.9500000 1.0000000 1.0000000
(1001) 0.9782608 1.0000000 1.0000000 0.9500000
(1100) 0.9782608 0.9500000 1.0000000 1.0000000
(0020) 0.9782608 1.0000000 0.9375000 1.0000000
(1020) 0.9673913 1.0000000 0.9375000 1.0000000
(0011) 0.9782608 1.0000000 0.9687500 0.9500000
(0110) 0.9782608 0.9500000 0.9687500 1.0000000
(1011) 0.9673913 1.0000000 0.9687500 0.9500000
(1110) 0.9673913 0.9500000 0.9687500 1.0000000
(0101) 0.9782608 0.9500000 1.0000000 0.9500000
(1101) 0.9673913 0.9500000 1.0000000 0.9500000
(0021) 0.9673913 1.0000000 0.9375000 0.9500000
(0120) 0.9673913 0.9500000 0.9375000 1.0000000
(1021) 0.9565217 1.0000000 0.9375000 0.9500000
(1120) 0.9565217 0.9500000 0.9375000 1.0000000
(0111) 0.9673913 0.9500000 0.9687500 0.9500000
(1111) 0.9565217 0.9500000 0.9687500 0.9500000
(0121) 0.9565217 0.9500000 0.9375000 0.9500000
(1121) 0.9456521 0.9500000 0.9375000 0.9500000
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Table 11. RELAIBILITIES AND 95 % LOWER CONFIDENCE
BOUNDS ( B)
VECTOR ; VEcToR | %5 LcB
(0000) 1.0000000 (0000) 1.0000000
(1000) 0.9891304 (1000) 0.9891304
(0010) 0.9582200 (0010) 0.8766983
(1010) 0.9476901 (1010) 0.8766983
(0001) 0.9396738 (0001) 0.8222825
(0100) 0.9396738 (0001) 0.8222825
(1001) 0.9293478 (0100) 0.8222825
(1100) 0.9293478 (1100) 0.8222825
(0020) 09171195 (0020) 0.8179346
(1020) 0.9069293 (1020) 0.8084239
(0011) 0.9003056 (0011) 0.7712974
(0110) 0.9003056 (0110) 0.7712974
(1011) 0.8903022 (1011) 0.7712974
(1110) 0.8903022 (0101) 0.7712974
(0101) 0.8828803 (0101) 0.7548369
(1101) 0.8730705 (1101) 0.7548369
(0120) 0.8615828 (0120) 0.7218070
(0021) 0.8615828 (0021) 0.7200747
(1021) 0.8519021 (1021) 0.7200747
(1120) 0.8519021 (1120) 0.7200747
(0111) 0.8457870 (0111) 0.6929346
(1111) 0.8362838 (1111) 0.6927614
(0121) 0.8093069 (0121) 0.6508338
(1121) 0.8001103 (1121) 0.6505433
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V. BONUS SYSTEM APPROACHES

A. BACKGROUND

Quality 1s described as * especially high degree of goodness or worth ” [Ref. 9
: p. 685]. In industry, a quality product i1s one that fulfills customer expectations.
There are two general aspects of quality:

» Quality of Design

» Quality of Conformance.

All goods and services are produced in various grades or levels of quality. These
vanations in grades or levels of quality are intentional; therefore the appropriate tech-
nical term is quality of design. The quality of conformance is how well the product
conforms to the specifications and tolerances required by the design. Quality of con-
formance 1s influenced by a number of the following factors:

= the choice of manufacturing process

» the training and supervision of the workforce

= type of quality assurance system { process controls, tests, inspections, etc. ) used

» the extent to which these quality-assurance procedures are followed

» the motivation of workforce to achieve quality.

Quality Control is the engineering and management activity by which we measure
the quality characteristics of a product, comparing them with specifications or require-
ments and taking appropriate remedial action whenever there is a difference between the
actual performance and the standard [Ref. 10: pp. 1-3).

As contracts are now written, contractors need only to satisfy the requirments of the
sampling inspection plan for lot acceptance. Contractors have no incentive to improve

the quality of the items they provide, although they are in a position to do so. As
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mentioned before, the quality of conformance is influenced by the motivation. Therefore
we can motivate manufacturers by giving a bonus for improved quality. To improve
quality, The Naval Weapons Support Center has decided to implement a bonus system

for pyrotechnic devices.

B. BONUS PLANS

In this chapter, we design a bonus system to improve the quality of pyrotechnic
devices. A good bonus system encourages reliability growth, because firms try to reach
a high quality to get a bonus. An effective bonus system must detect small differences
among the offered lots. In the previous chapters, we estimated the reliability of a
pyrotechnic device in several ways. We assumed independence in the first model, and
we assumed dependence between tests in the last two models. The estimated reliabilities
in the first two models are close to each other, but they exhibit different structures in
order. One can easily see that the failure vector of the worst case ( 1 1 2 1 ) has bigger
reliability value than ten of the possible cases, from Table 5 and Table 15. In addition,
the order of 95 % LCB’s of cases does not match to the order of MLE’s in independent
models. But in the worst case scenario, which assumes dependence between tests, we
get the same order for both 95 % LCB’s and MLE’s. Thus, we will use the worst case
scenario model in further calculations for the bonus system. With the assumptions
above, we can apply three sampling plans for giving bonuses to the manufacturers.
These are:

» Single Sampling Bonus System

» Double Sampling Bonus System

®= Multi-Sampling Bonus System.

Manufacturers have to meet pyrotechnic device acceptance critenia first, before

having a chance to get a bonus.
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1. Single Sampling Bonus System
In this bonus system, we will decide two things at the end of inspection. First
we will decide whether the offered lot is acceptable or not, and then for lots which are
accepted we will decide whether to give a bonus to the manufacturer.

The Single sampling bonus system 1s designated by three numbers. These are,

n,, LCBFB, LCB

where
®» 1, is the sample size for inspection ( here n, = 92 ).
s LCBFB is the cut off value applied to the lower confidence bound for
awarding a bonus.
s [.CB means estimated lower confidence bound after inspection. (If LCB is
greater than or equal to LCBFB, then a bonus is awarded.)
The following algorithm shows us how single sampling bonus system works for

pyrotechnic devices.

STEP # 1 : DETERMINE CUT OFF VALUE FOR AWARDING THE BONUS.
STEP # 2 : TAKE A SAMPLE SIZE OF 92 FROM OFFERED LOT.

STEP # 3 : APPLY MANUFACTURER AND THREE ENVIRONMENT TESTS.
STEP # & : COMPARE RESULTS OF TESTS WITH ACCEPTANCE CRITERIA.
STEP # S : ESTIMATE ITS LOWER CONFIDENCE BOUND ( LCB ),

IF THEY MET ACCEPTANCE CRITERIA.
STEP # 6 : COMPARE LCB OF LOT WITH LCBFB
STEP # 7 : 1IF THE LCB IS GREATER THAN OR EQUAL TO LCBFB,

GIVE BONUS TO THE FIRM.
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According to the algorithm described above, the following are possible events
for the firms.

= Firm may not satisfv our acceptance criteria. This means that firm gets a
failure vector worse than (1121).

= ['irm satisfies acceptance criteria, but its LCB may be less than LCBFB. This
means that firm does not get bonus, but the lot is accepted.

» Firm satisfies acceptance criteria, and its LCB may be greater than or equal
to LCBFB. This means that firm gets the bonus.

2. Double Sampling Bonus System

A double sampling plan has an advantage over a single sampling plan. Because
a double sampling plan involves a larger sample size, it reduces the chance that a man-
ufacturer who deserves a bonus will not get one. Double Sampling Bonus System per-
mits the taking of two samples on which to make a decision [Ref. 11 : pp. 184-185].

In this system, we have two inspection stages. If the firm does not get a bonus
after the first inspection, then the firm is given a second chance with a second inspection.

A double sampling bonus system is designated by five numbers.

n,, n,, LCBFB, LCB1, LCB2

where

= n, is the sample size for first inspection, ( here n, = 92)

s n, is the sample size for second inspection, ( here n, = 92)

= LCBFB is the cut off value applied to lower confidence bounds for awarding
bonuses,

s LCBI is the estimated lower confidence bound after first inspection,

s LCB2 is the updated estimate of lower confidence bound after second in-

spection.




In the double sampling bonus system, if the firm does not get a bonus after the
first inspection but does meet the acceptance criteria for the first sample, then a second
sample 1s taken. We already have LCB’s of possible cases aftes the first inspection in
Table 11. After the second inspection, we calculate the LCB using an aggregated failure
vector which includes failures from both samples. When we compute LCB’s using ag-
gregated failure vector after the second inspection, we have a total sample size of 184;
there are 1335 different failure vectors for which the lot meets the acceptance criteria for
both samples. After tabulating these possible 135 cases and the estimates of R, we used
the bootstrap procedure to find LCB’s for each case. We created 5000 random failure
vectors for each of them by using case success probabilities in tests. After this, we esti-
mated MLE’s of 5000 failure vectors for each possible case. Finally, we estimated 95
% LCB of each case. These calculations were done by using programs RANVEC,
MLEB, SORT in appendix B, G and C respectivelv. The results are tabulated at Ap-
pendix I. The following algorithm shows us how double sampling bonus system works

for pyrotechnic device.

STEP # 1 : DETERMINE LCBFB.
STEP # 2 : TAKE A SAMPLE SIZE OF 92 FROM OFFERED LOT.
STEP # 3 : APPLY MANUFACTURER AND THREE ENVIRONMENT TESTS.
STEP # &4 : COMPARE RESULTS OF TESTS WITH ACCEPTANCE CRITERIA.
STEP # 5 : ESTIMATE ITS LOWER CONFIDENCE BOUND ( LCB1 ),
IF THEY MET ACCEPTANCE CRITERIA.
STEP # 6 : COMPARE LCB1 OF LOT WITH LCBFB
STEP # 7 : IF THE LCB1 IS GREATER THAN OR EQUAL TO LCBFB,
GIVE BONUS TO THE FIRM.

STEP # 8 : IF THE LCB1 IS LESS THAN LCBFB,
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GIVE A SECOND CHANCE TO THE FIRM FOR BONUS.
STEP # 9 : TAKE A NEW SAMPLE SIZE OF 92 FROM OFFERED LOT.
STEP # 10 : APPLY MANUFACTURER AND THREE ENVIRONMENT TESTS.
STEP # 11 : AFTER GETTING THE NEW FAILURE VECTOR,
ADD THIS ONE TO THE FIRST FAILURE VECTOR.
STEP # 12 : ESTIMATE ITS LOWER CONFIDENCE BOUND ( LCB2 ),
WITH AGGREGATED FAILURE VECTOR.
STEP # 13 : COMPARE LCB2 OF LOT WITH LCBFB
STEP # 14 : 1IF THE LCB2 IS GREATER THAN OR EQUAL TO LCBFB,

GIVE BONUS TO THE FIRM.

According to the algorithm described above, the following are possible events
for the firms.

» The firm may not satisfy our acceptance criteria after first inspection. This
means that firm gets a failure vector worse than (1121 ). The lot is not accepted and
second sample is not taken.

» The firm satisfies acceptance criteria, and its LCB1 may be greater than or
equal to LCBFB. This means that it gets bonus after first inspection, and a second
sample 1s not needed.

s The firm satisfies acceptance criteria, but its LCB1 may be less than LCBFB.
This means that it does not get the bonus after first inspection, but still has a chance to
get a bonus if it submits a second sample.

Of those which submit a second sample
» LCB2 may be less than LCBFB. It means that firm does not get the bonus,

but the lot i1s accepted.
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» The aggregated failure vector meets acceptance criteria. But LCB2 may be

grater than or equal to LCBFB. It means that firm gets bonus.
3.  Multi-Sampling Bonus System

In this svstem approach, we mayv take a sample of size 92 from offered lot three
times, four times or more. But if we use the three sampling bonus system, after the third
inspection, we mav get (4 X 4 X 7 x 4 = 448 ) 448 different failure vectors. Multi-
Sampling Bonus Svstem is going to be more computationally intensive with respect to
double sampling bonus system. This can be done later using with the same reasoning

in double sampling bonus system.

C. EXAMPLES
1. Single Sampling Bonus System

Let us assume that we decided that lower confidence bound for bonus will be
0.8500. We are going to use this LCBFB in these examples.
s Case & |

At the end of inspection, firm has following failure vector

(200 0).

The firm did not meet the acceptance criteria. We immediately reject the lot and no

bonus 1s given.
® Case # 2

At the end of inspection, firm has following failure vector
(1L 0 0 1).

The firm meets the acceptance criterta. We estimate its 95 % lower confidence bound

to be
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LCB = 0.8222825.

Because LCB < LCBFB, we do not give a bonus to the firm.
s Case # 3

At the end of inspection, firm has following failure vector

(0 01 0).

The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be

LCB = 0.8766983 .

Because LCB > LCBIB, we give a bonus to the firm.
2. Double Sampling Bonus System
= Case # |

At the end of first inspection, firm has following failure vector.

(100 1).

The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be

LCB1 = 0.8222825

Because LCB1 < LCBFB , we give a second chance to the firm. Here is the result of

second inspection

(0 3 2 1).

Thc aggregated failure vector will be
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(1 32 2).

It 1s clear that LCB2 < LCBI for this data, thus we do not give a bonus to the firm.
s Case # 2

At the end of first inspection, firm has following failure vector

(100 1),

The firm meets the acceptance criteria. We estuimate its 95 % lower confidence bound

to be

LCB1 = 0.8222825 .

Here, LCB < LCBFB thus we will give a second chance to the firm. Here is the result

of second inspection

(00 1 1).

The aggregated failure vector will be

(1 01 2),

and we estimate its 95 % lower confidence bound to be

LCB1 = 0.8369564 .

Because L.CB < LCBFB , we do not give a bonus to the firm.
s Case # 3

At the end of first inspection, firm has following failure vector

(100 1).
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The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be
LCBl = 0.8222825 .

Because LCBl < LCBFB, we will give a second chance to the firm. Here 1s the result

of second inspection

(0 0 0 1.
The aggregated failure vector will be

(1 0 0 2),

and we astimate its 95 % lower confidence bound to be
LCB1 = 0.8706521 .

Because LCB2 > LCEFB , we will give a bonus to the firm.




VI. SIMULATION RESULTS OF BONUS SYSTEMS

A. BACK GROUND

We simulated the bonus system to get an idea of how well the bonus system pro-
posed 1n the previous chapter works. This provides the user with a means of setting the
cut off criteria for awarding a bonus. To generate random failure vectors, we need to
know the probabilities of being successful in each test for the firm. First, we assume that
the firm has an cqual probability of being successful in each test, with the following

valuesof P, = P, = P, = P,
e 0.9375
¢ 0.9500
* 0.9750
e 0.9900
¢ 0.9950.

In a second set of simulations, we assume that the manufacturer test has a bigger
probability of being successful than the other environment tests. The following proba-

bilities of being successful in manufacturer test were used.
* 0.9990
e 0.9950
» 0.9750

e 0.9500.
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In these cases, we used equal probabilities of being successful in other environment tests
with values between 0.9375 and manufacturer test probability for that given case.
Finally, we assume that the manufacturer test should have smaller probability of being
successful. When we study these cases with this assumption, we used probabilities of
being successful in other environment tests between manufacturer test probability and
0.9990 for that given case. We assume that minimum value of the manufacturer test
probability will be 0.9500 because of worst case in last two assumptions.

We generated 2000 random failure vectors for each possible combination of proba-
bilities by using program RANVEC in Appendix B. They were used for 1000 repli-
cations of each bonus system, because the Double Sampling Bonus System ( DSBS )
potentially uses two failure vectors per replication.

After getting the failure vectors, the next step is to decide lower confidence bound
for giving bonus ( LCBFB ). We chose 0.800, 0.825, 0.850, 0.875, 0.900, 0.950, 0.999
as LCBFB during our simulations. We simulated bonus systems by using program BO-
NUS in Appendix G. Program BONUS counts how many times firm gets bonus during
1000 replications. And then it calculates the bonus percentage dividing counted number
by 1000. For each scenario this bonus percent is an estimate of the probability of getting
a bonus.

B. INITIAL COMPARISON OF SYSTEMS
In this part, with equal probabilities of being successful in tests, we tried to see the

difference between the Single and the Double Sampling Bonus Systems. For this reason,

we simulated Single Sampling Bonus System. Results were tabulated and plotted in next

pages.
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Table 12. SINGLE SAMPLING BONUS SYSTEM (EQUAL PROBABILITIES)

PROB.'S CHOSEN LOWER CONFIDENCE BOUNDS FOR BONUS

0.800 0.825 0.850 0.875 0.900 0.950 0.999
0.9200 0.025 0.007 0.007 0.007 0.002 0.002 0.002
0.9375 0.060 0.023 0.023 0.023 0.010 0.010 0.007
0.9450 0.092 0.044 0.044 0.044 0.018 0.018 0.010
0.9500 0.117 0.053 0.053 0.053 0.022 0.022 0.011
0.9600 0.222 0.112 0.112 0.112 0.045 0.045 0.028
0.9700 0.380 0.198 0.198 0.198 0.107 0.107 0.067
0.9750 u.482 0.281 0.281 0.281 0.163 0.163 0.067
0.9800 0.609 0.381 0.381 0.381 0.237 0.237 0.106
0.9850 0.740 0.511 0.511 0.511 0.362 0.362 0.166
0.9900 0.868 0.646 0.646 0.646 0.502 0.502 0.274
0.9950 0.955 0.805 0.805 0.805 0.502 0.502 0.407

It is obvious that there is no difference between some lower confidence bounds for bonus
from the table above. The firm gets the same bonus percentage when we use 0.823,
0.850, 0.875 as lower confidence bound for bonus. The saine thing occurs when we use
0.900 and 0.950 as LCBFB. For this rcason, we are going to see four curves in Figure

1. Figure 2 shows Double Sampling Bonus System with different LCBI'B’s.
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SINGLE SAMPLING BONUS SYSTEM

CIFFERENT LCB'S FOR BONUS WITH EQUAL TEST PROBABILITIES
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As you sec in figure 2, we have six different curves for Double Sampling Bonus System.
Because in this system, we can see from the table that LCBFB’s 0.900 and 0.950 have

approximately the same bonus percentage. [For this reason we did not plot for 0.950.

Table 13. DOUBLE SAMPLING BONUS SYSTEM (EQUAL PROBABILITIES)

PROB.'S CHOSEN LOWER CONFIDENCE BOUNDS FOR BONUS

0.800 0.825 0.850 0.875 0.900 0.950 0.999
0.9200 0.026 0.008 0.007 0.007 0.002 0.002 0.002
0.9375 0.064 0.030 0.025 0.023 0.010 0.010 0.007
0.9450 0.108 0.059 0.050 0.045 0.020 0.018 0.010
0.9500 0.142 0.079 0.063 0.057 0.027 0.022 0.011
0.9600 0.277 0.172 0.144 0.122 0.052 0.045 0.028
0.9700 0.498 0.351 0.293 0.236 0.138 0.107 0.067
0.9750 0..624 0.487 0.423 0.353 0.212 0.163 0.106
0.9800 0.752 0.632 0.565 0.487 0.319 0.237 0.166
0.9850 0.861 0.799 0.738 0.643 0.486 0.362 0.274
0.9900 0.948 0.920 0.887 0.799 0.671 0.502 0.407
0.9950 0.987 0.982 0.970 0.941 0.872 0.695 0.626

Figure 2 shows DSBS to be more sensitive in the sense that a higher percentage of
the firms were awarded a bonus. For this reason, we decided to implement DSBS 1n all

stmulations.




C. SIMULATION RESULTS WITH DIFFERENT LCB’S FOR BONUS

In this section, results for cach chosen lower confidence bound for bonus will be

presented as follows. We used values in Table 13 to draw plots with equal probabilities

in cach test. Polvnomial approximation was used in curve fitting.

0.8
T

0.8

0.4

BONUS PERCENT

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILUTIES; LCBFB = 0.800

0.82 054 o8 0.88
PROBABILITIES
Figure 3. Double Sampling Bonus System With LCBFB = 0.800
Table 14. DSBS (EQUAL PROBABILITIES) LCBFB = 0.800
LOWER CONFIDENCE BOUND FOR BONUS IS 0.800

PROB.'S BONUS % PROB.'S | BONUS % PROB.'S | BONUS %
0.9200 0.026 0.9375 0.064 0.9450 0.108
0.9500 0.142 0.9600 0.277 0.9700 0.498
0.9750 0.624 0.9800 0.752 0.9850 0.861
0.9900 0.948 6.9950 0.987
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In Figure 3, when the probabilitics of being successful in each test increase, then the
bonus percent increases. For example, when the test probabilities is equal to 0.9200,
then the bonus percent i1s 0.026. If the firm increases its probabilities of being succesful
in cach test to 0.9900, then the bonus percent becomes 0.948. The result of the double
sampling bonus svstem with different lower confidence bounds are tabulated and plotted
in Appendix J.

To see whether the probability of passing the manufacturer test effects the bonus
percentage differently than the other probabilities, we assumed that the environment
tests would have equal probabilities. But the firm will have a different probability of
being successful in the manufacturer test. In the following table, the first row represents
probability of being successful in the environment tests and the first column represents
probability of being successful in the manufacturer test. The intersection of rows and
columns gives us the bonus percentage of a firm with given probabilities of being suc-
cessful in the tests. These procedures were done for each LCBFB value separately. The
results are tabulated and plotted in Appendix K. Bonus percentages for LCBFB =
0.8000 are plotted on the following page. It is clear that the bonus percentage of the
firm will be high if the firm has big probabilities of being succesful in both manufacturer

test and other joint environment tests.
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D. BONUS PERCENTAGE ( BPRCT) FORMULATION

In this section we try to approximate probability of getting a bonus as a function
of lower confidence bound for bonus ( LCBI'B ), probability of passing manufacturer
test {( P, ), and probability of passing environment tests ( £, ). To do this, we use re-
gression analysis with GRAFSTAT using the bonus percentages which are the simulated
values of the probability of getting a bonus. If a reasonable relationship between the
bonus percentage and LCBFB and the probabilities P, and P, can be found; it can be
used to set LCBFB without resorting to simulation.

We want to formulate bonus percentages as a function of the following:

s Lower confidence bound for bonus ( LCBFB )

s Probability of passing manufacturer test P,

=  Probability of passing environment tests P,.

After polynomial approximation, we can see that plotted graphs (Figures 3-10) look
like logistic growth curves [Ref. 12: p. 383]. Then we can formulate bonus probabilities

(BP) using the logistic growth function.

BP = —— (7.4)

where

A= Pfy+ B P+ BPl+ B3P, + BsP; + Bs P, P, + B LCBFB  (1.5)

We can make a transformation described as below.

L+ et = == (7.6)
et = LA (7.7)
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A = log [ Lot ] (7.8)

Now we have a linear equation as a function of LCBFB, P, and P,, We may use
simulation results and approximate parameters doing a linear regression.

m Let Y be the ( n x 1) column vector of observations on dependent variable.

s Let X be the ( n x p' ) matrix consisting of a column of ones, which is labeled 1,
followed by p column vectors of observations on independent variables.

» Let B be the ( p’ x 1 ) vector of parameters to be estimated.

® Let ¢ be the ( n x 1) vector of random errors. Then

Y=XB+e (7.9)

We can obtain observations on dependent variable as below,

1 — BPRCT
= log [ BPRCT ] (7.10)
where BPRCT is the bonus percentage obtained from the siraulation. As an example
we have the following information from simulations.

« LCBFB = 0.875

.« P, = 0.9500
. P? = 0.9025
.« P, = 09375
. P1 = 0.8789
<P, P, = 0.8910

« BPRCT = 0.029
Y = 3.5110.

We can write following equation.
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5110 = By + £,0.95 + $,0.9025 + B;0.9375 + B,0.8789 + f50.8910 + B, 0.875 + ¢.

(9]

We deliberately chose 30 random results from simulations. We formulate them as
above. We can estimate unknown parameters on these equations doing linear re-

gression. 30 equations can be written with matrix notation as follows:

y = | Y3 . (7.11)

And X matrix is designed as follows:

] 7
1Py P P(1) PPy Py(1)
| P2 PI2) PA2) PX2) P P2

x=|1 R0 PG PG PG PPE) | 7.12)

1 P,(30) P}(30) P,(30) P;(30) P, P,(30)

i 1

And parameter vector will be as below.

Bo
B,
B,
g =1 B | (7.13)
Ba
Bs
Be
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We estimate parameters with linear regression using GRAFSTAT packages. And
then we formulate the bonus percentage using the estimates of parameters. The esti-

mated bonus probubilitics are given by

BP = ———— . (7.14)
1 + e*P

The following estimates of the parameters were obtained from the rezression.

Table 16. COEFFICIENT VECTORS OF REGRESSION ANALYSIS

PARAMETERS ESTIMATED VALUE

B -1042.3
B 695.11
B, -86.661
B. 1560

B; -569.81
B -570.62
B, 12.266

The standard error was 0.4547] after the linear regression. We can use these esti-
mates of parameters in equation (7.5). And we can estimate the bonus probability of the
firm when the probability of passing tests and lower confidence for bonus are known.
Some examples are calculated with equation (7.5). Results of the calculations and

comparison with simulation are summarized in following table.
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Table 17. BONUS PERCENTAGES WITH REGRESSION ANALYSIS
LCBFB P, P, SN EST.VALUE
0.800 0.9750 0.9750 0.624 0.564
0.800 0.9990 0.9375 0.106 0.062
0.825 0.9750 0.9950 0.882 0.911
0.825 0.8500 0.9750 0.064 0.077
0.850 0.9500 0 9900 0.612 0.615
0.850 0.9900 0.9750 0.476 0.529
0.875 0.9000 0.9750 0.114 0.080
0.875 0.9700 0.9700 0.236 0.211
0.900 0.9950 0.9990 0.985 0.945
0.900 0.8750 0.9900 0.158 0.096
0.950 0.9450 0.9450 0.018 0.010
0.950 0.9750 0.9990 0.839 0.790
0.999 0.9850 0.9850 0.274 0.335
0.999 0.9900 0.9250 0.004 0.002
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VII. CONCLUSIONS AND RECOMMENDATIONS

We estimated the reliability of pyrotechnic device from the sampling plan using the
following models:

» Mavimum likelihood assuming independence of pyrotechnic device activation in
different environments;

s [og lincar model incorparating some dependence between pyrotechnic device ac-
tivation in different environments;

» Worst case scenario which gives a lower bound for the estimated reliability for the
general model where no assumptions are made about the form of dependence between
pyrotechnic device activation in different environments.

Using these models and based on sampling plan data, estimates of overall reliability
along with 95 % lower confidence bound are obtained. We computed the lower confi-
dence bound for each possible case by bootstrapping.

Results from th-e first model are not consistent with the way pyrotechnic devices
operate. In particular, the estimated reliabilities are not ordered as we expected them
to be. Intiutively, we expect samples with fewer failures to give smaller R values and
corresponding LCB’s than samples with more failures. This is not the case for the first
model. For example, the failure vector that has the maximum number of failur.s for
each test (a total of 5 failures ) 1s in the middle of the order with respect to R and the
95 % lower confidence bound. The failure vector { 0 1 0 1 ) with a total of 2 failures
has a much lower R and LCB. The discrepency between the results of this model and
what we expected to see are probably due to the fact that there is a dependence between

the events which a device activates under different environments.
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The results of the log linear model design with two-way dependence assumptions are
similar to the first model. Two-way interaction terms were used in this model. More-
over, rchabilities of several cases were not calculated because of computational limita-
tions. Due to the extensive censoring in the sample data, it does not appear to be
possible to estimate the reliability based on models which incorparate dependence.
Thus, we turn to finding lower bounds for the estimated reliability based on models with
dependence.

Finally, the worst case scenario model gives the most reasonable results for this
problem. Both the lower bounds for estimates of reliabilities and 95 % lower confidence
bounds for these lower bounds are ordered according to the total number of failures.
Thus, the results from the worst case scenario were used to implement the bonus system
for pyrotechnic devices.

After getting the estimate of reliability and 95 % lower confidence bound for each
case, we tried to design a bonus system to improve the quality of pyrotechnic devices.
We used 95 % lower confidence bounds instead of the estimated overall reliabilities to
decide whether to give bonuses. Two sampling plans for giving the bonus to the man-
ufacturers were considered:

» Single Sampling Bonus System

® Double Sampling Bonus System.

We simulated two sampling bonus systems to see the difference between them.
We concluded that the double sampling system is more sensitive than single sampling
bonus system.

To formulate an approximate bonus percentage as a function of lower confidence
bound for bonus ( LCBFB ), the probability of passing manufacturer test P,, and the
probability of passing the environment tests P, we used regression analysis with

GRAFSTAT.
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Because the sampling plan results in so much censoring, the only reasonable esti-
mates of overall reliability that we obtained were actually lower bounds. This makes the
bonus system conservative in the sense that a bonus might not be awarded what it is
deserved. Therefore, if a bonus system is to be implemented, a more comprehensive
sampling plan needs to be devised which allows estimation of R. A simple solution to
this problem can be to apply all environmental tests to the same sample which would

give a measure of dependence between environmental tests.
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APPENDIX A. PROGRAM MLEA

o L L L e o A e T T T Lk L b S e R e e b kR

PROGRAM MLEA
B L Tt
THIS IS A FORTRAN PROGRAM TO CALCULATE THE RELIABILITY OF AN
ITEM AFTER EXPOSURE TO SEVERAL ENVIRONMENTS WITH INDEPENDENCE
ASSUMPTION WHICH IS DESCRIBED IN CHAPTER I . THE PROGRAM READS
5000 SUCCESS VECTORS, WHICH ARE RANDOMLY GENERATED BY PROGRAM
RANVEC, FROM AN INPUT FILE CALLED SUCVECT ONE BY ONE. AFTER
CALCULATION IT THEN PROGRAM WRITES ESTIMATED RELIABILITIES TO
AN OUTPUT FILE CALLED RESULT.

otfes allsatn. eterata. B e -I..l-f.-l»-l—-l-l--l-l- dm
B e L e o o T R o I R ey oy L T e Ly oy S R R S e e S R T S e

VARIABLES

T

SOM : NUMBER OF SUCCESSFUL ITEMS IN MANUFACTURER TEST.

SOTH : NUMBER OF SUCCESFUL ITEMS IN TEMPERATURE AND HUMIDITY
TEST.

SOV : NUMBER OF SUCCESSFUL ITEMS IN VIBRATION TEST.

SOA : NUMBER OF SUCCESSFUL ITEMS IN ALTITUDE TEST.

R1H : ESTIMATED PROBABILITY OF PASSING FROM MANUFACTURER TEST.

RZH : ESTIMATED PROBABILITY OF PASSING FROM TEMPERATURE AND
HUMIDITY TEST.

R3H : ESTIMATED PROBABILITY OF PASSING FROM VIBRATION TEST

R4H : ESTIMATED PROBABILITY OF PASSING FROM ALTITUDE TEST

RHMLE : ESTIMATED RELIABILITY OF ITEM AFTER EXPOSURE TO
SEVERAL ENVIRONMENT TESTS.

N : SAMPLE SIZES FOR EACH TEST

X : NUMBER OF SUCCESSFUL ITEMS IN EACH TEST.

FLAG : INDICATOR VARIABLE FOR DETERMINING EASY AND HARD CASE.

R1MAX : R1H VALUE WHICH MAXIMIZES LIKELIHOOD.
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R2MAX : R2H VALUE WHICH MAXIMIZES LIKELIHOOD.
R3MAX : R3H VALUE WHICH MAXIMIZES LIKELIHOOD.
R4MAX : R4H VALUE WHICH MAXIMIZES LIKELIHOOD.
LMAX : HIGHEST MAXIMUM LIKELIHOOD VALUE.

L : LIKELIHOOD VALUES AT THE END OF EACH HARD CASE.

v : TOTAL SAMPLE SIZES IN EACH HARD CASE.

Q1H : REORGANIZED PROBABILITY OF MANUFACTURER TEST.

Q2H : REORGANIZED PROBABILITY OF TEMP. AND HUMIDITY TEST.
Q3H : REORGANIZED PROBABILITY OF VIBRATION TEST.

Q4H : REORGANIZED PROBABILITY OF ALTITUDE TEST.

FhhRfhhhihhhhhikihbhbbhhdidthhhdhibhiihhhihhhhdhRihhhhrhhiihihiiriiis

TYPE DECLARATION

REAL SOM(5000),SOTH(5000),S0V(5000),50A(5000),R1H,R2H,R3H,R4H,
+RHMLE(5000),N(&4),X(4) ,R1MAX,R2MAX ,R3MAX ,R4MAX ,LMAX,V(7),Q1H,Q2H,
+Q3H,Q4H,NTOT,L(7)

INTEGER I,J

LOGICAL FLAG(4)

R e e o e o e e RS o e Ty L e e e X

READING SUCCESS VECTORS FROM SUSVECT FILE
DO 60 I=1,5000

READ(7,*) SOM(I),SOTH (I),SOV(I),SOA(I)

FEAATAAAA AR A b AR drb et t Shdh i hht

FILES FOR READING AND WRITING
CALL EXCMS ('FILEDEF 7 DISK SUCVECT DATA Al')
CALL EXCMS ('FILEDEF 16 DISK RESULT DATA Al')
Fedededrdedehededohetrhofriefolodoiooiokdeiokodoiok ook frioioioiotolrioiok ok doioioioioloiofefoloictodolnicioloiedok
INITIALIZATION OF SAMPLE SIZES
N(1)= 20.0
N(2)= 20.0
N(3)= 32.0
N(4)= 20.0
INITIALIZATION OF FLAG VARIABLES
DO 10 J=2,4
FLAG(J)= .FALSE.
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10 CONTINUE

NUMBER OF SUCCESSES IN EACH TEST

X(1)= sOM(I)

X{(2)= SOTH(I)

X(3)= SOV(I)

X(4)= SOA(I)

B kT R o T L e S S R S

CHECK OPERATION FOR EASY CASE

IF ((X(1)/20.00).GE.(X(2)/20.00)) THEN
FLAG(2)= .TRUE.

END IF

IF ((X(1)/20.00).GE.(X(3)/32.00)) THEN
FLAG(3)= .TRUE.

END IF

IF ((X(1)/20.00).GE.(X(4)/20.00)) THEN
FLAG(4)= .TRUE.

END IF

IF ( FLAG(2).AND.FLAG(3).AND.FLAG(4) ) THEN

CALCULATIONS IN EASY CASE
R1H= X(1)/20.0
R2H= X(2)/20.0
R3H= X(3)/32.0
R4H= X(4)/20.0
QlH= R1H
Q2H= R2H/Q1H
Q3H= R3H/Q1H
Q4H= R4H/QIH
RHMLE(I)= Q1H*Q2H*Q3H*Q4H

GO TO 50
END IF
Fhhdefedede ook ok o  aEs

CALCUI.ATIONS IN HARD CASES
INITIALIZATION
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30

40

DO 30 J=1,7
V(J)= 0.0
L(J)= 0.0
CONTINUE
LMAX= 0.0
NTOT= 0.0
B R R g Rt L Tt R T T R R o R e e e L e T A e o b e e e e e
CASE 1 RI1H.LT.1.0 AND R1H = R2H = R3H = R4H
DO 40 J=1,4
V(1)= V(1)+X(J)
NTOT= NTOT+N(J)
CONTINUE
R1H= V(1)/NTOT
L(1)= ((R1H)**V(1))*((NTOT-V(1))/NTOT)**(NTOT-V(1))
IF (L(1).GT.LMAX) THEN
LMAX= L(1)
RIMAX= RIH
R2MAX= R1H
R3MAX= R1H
R4MAX= R1H

END IF
Fhfedededrhehetoiodoieioiodokedeieioloiok dolodoietolodoiolodoioidotodooidoorielodoiiciofookokohodkodeiohodoinok dok

CASE 2 RI1H.LT.1.0, R1H = R2H = R3H , R4H IS BETWEEN 0.0 AND R1H
IF ( X(4)/20.0.NE.1.0 ) THEN
V(2)= X(1)+X(2)+X(3)
NTOT= N(1)+N(2)+N(3)
R1H= V(2)/NTOT
IF((X(4)/20.00).LE.R1H) THEN
L(2)= ((RIH)**V(2))*((NTOT-V(2))/NTOT)**(NTOT-V(2))*((X(4)
+/20.0)**X(4))*(((20.0-X(4))/20.0)**(20.0-X(4)))
IF (L(2).GT.LMAX) THEN
LMAX= L(2)
RIMAX= R1H
R2MAX= R1H
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R3MAX= R1H
R4MAX= X(4)/20.0
END IF
END IF
END IF

T S U O N S T T T DU T T T O L SO O T O B o D S S S T B L T e EL B T T R T i T O N I L N N e %
P T T T T T T D T e T T T T T e T N T S A D i Tt T A T T T S T i i D Il T T T i i N T T S T T T e T D e T i

CASE 3 R1H.LT.1.0, R1H = R2H = R4H , R3H IS BETWEEN 0.0 AND R1H

IF ( X(3)/32.0.NE.1.0 ) THEN
V(3)= X(1)+X(2)+X(4)
NTOT= N(1)+N(2)+N(4)
R1H= V(3)/NTOT
IF ((X(3)/32.00).LE.R1H) THEN
L(3)= ((RIH)**V(3))*((NTOT-V(3))/NTOT)**(NTOT-V(3))*((X(3)
+/32.0)**X(3))*(((32.0-X(3))/32.0)**(32.0-X(3)))
IF (L(3).GT.LMAX) THEN
LMAX= L(3)
R1MAX= R1H
R2MAX= R1H
R3MAX= X(3)/32.0
R4MAX= R1H
END IF
END IF

END IF
B e e L e e e

CASE 4 RI1H.LT.1.0, R1H = R3H = R4H , R2H IS BETWEEN 0.0 AND R1H
IF ( X(2)/20.0.NE.1.0 ) THEN
V(4)= X(1)+X(3)+X(4)
NTOT= N(1)+N(3)+N(4)
R1H= V(4)/NTOT
IF ((X(2)/20.00).LE.R1H) THEN
L(4)= ((R1H)**V(4))*((NTOT-V(4))/NTOT)**(NTOT-V(4))*((X(2)
+/20.0)**X(2))*(((20.0-X(2))/20.0)**(20.0-X(2)))
IF (L(4).GT.LMAX) THEN
LMAX= L(4)
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R1MAX= R1H
R2MAX= X(2)/20.0
R3MAX= R1H
R4MAX= R1H
END IF
END IF
END IF
* B R T R T L R L ek e L o e T b e e L L T T T R e T R TR e T T S R e
*# CASE 5 R1H.LT.1.0, R1H = R2H R3H , R4H ARE BETWEEN 0.0 AND R1H
IF ((X(3)/32.0.NE.1.0).AND.(X(4)/20.0.NE.1.0)) THEN
V(5)= X(1)+X(2)
NTOT= N(1)+N(2)
R1H= V(5)/NTOT
IF((X(3)/32.00).LE.R1H.AND.(X(4)/20.00) .LE.R1H) THEN
L(5)= ((RIH)**V(5))*((NTOT-V(5))/NTOT)**(NTOT-V(5))*((X(3)
+/32.0)%%X(3))*((32.0-X(3))/32.0)*¥%(32.0-X(3))*((X(4)/20.0)**
+x(4))*((20.0-X(4))/20.0)**(20.0-X(4))
IF (L(5).GT.LMAX) THEN
LMAX= L(5)
R1MAX= R1H
R2MAX= R1H
R3MAX= X(3)/32.0
R4MAX= X(4)/20.0

END IF
END IF
END IF
* B o L L o e e L L e e L S e e
* CASE 6 R1H.LT.1.0, R1H = R3H R2H , R4H ARE BETWEEN 0.0 AND R1H

IF ((X(2)/20.0.NE.1.0).AND.(X(4)/20.0.NE.1.0)) THEN
V(6)= X(1)+X(3)
NTOT= N(1)+N(3)
R1H= V(6)/NTOT
IF((X(2)/20.00).LE.R1H.AND.(X(4)/20.00).LE.R1H) THEN
L(6)= ((RIH)**V(6))*((NTOT-V(6))/NTOT)**(NTOT-V(6))*((X(2)
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+/20.0)**X(2))*((20.0-X(2))/20.0)%*(20.0-X(2))*((X(4)/20.0)**
+x(4))*((20.0-X(4))/20.0)#%(20.0-X(4))

IF (L(6).GT.LMAX) THEN

LMAX= L(6)
R1MAX= R1H
R2MAX= X(2)/20.0
R3MAX= R1H
R4MAX= X(4)/20.0
END IF
END IF
END IF
#* e ek T T T S E S S e S I
* CASE 7 R1H.LT.1.0, R1H = R4H R2H , R3H ARE BETWEEN 0.0 AND R1H

IF ((X(2)/20.0.NE.1.0).AND.(X(3)/32.0.NE.1.0)) THEN

V(7)= X(1)+X(4)

NTOT= N(1)+N(4)

R1H= V(7)/NTOT

IF((X(2)/20.00) .LE.R1H.AND.(X(3)/32.00) .LE.R1H) THEN

L(7)= ((RIH)**V(7))*((NTOT-V(7))/NTOT)**(NTOT-V(7))*((X(3)
+/32.0)**X(3))*((32.0-X(3))/32.0)**(32.0-X(3))*((X(2)/20.0)**X(2))
+%((20.0-X(2))/206.0)**(20.0-X(2))

IF (L(7).GT.LMAX) THEN
LMAX= L(7)
R1MAX= R1H
R2MAX= X(2)/20.0
R3MAX= X(3)/32.0
R4MAX= R1H

END IF

END IF

END IF

D sirats bttt ade ke S e e ade e
* R o o e oy T iy e g o o Ty o L it
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50
60

CALCULATION OF RHMLE VALUE WITH RESPECT TO CASE WHICH HAS LARGEST

MAXIMUM LIKELIHOOD IN HARD CASE
R1H= R1MAX

R2H= R2MAX

R3H= R3MAX

R4H= R4MAX

Q1H= R1H

Q2H= R2H/Q1H

Q3H= R3H/Q1H

Q4H= R4H/Q1IH

RHMLE(I)= Q1H*Q2H*Q3H*Q4H

kiR iaate e b o e e e o n L o he e e e i e T Sy L R o e e e e ek Y

WRITING AFTER EACH CALCULATION
WRITE (16,*) RHMLE(I)

CONTINUE

STOP

END
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APPENDIX B. PROGRAM RANVEC

...............................................................
........

................................................................
........

THIS IS THE PROGRAM TO GENARETE RANDOM NUMBERS FROM BINOMIAL
DISTRIBUTION.THE PROGRAM READS PROBABILITIES OF BEING SUCCESSFUL
IN FOUR TESTS INTERACTIVELY. IT GENERATES UNIFORMLY DISTRIBUTED
RANDOM NUMBERS WITH THESE PROBABILITIES ACORDING TO SAMPLE SIZE
OF EACH TEST. FOR EACH TEST PROGRAM COUNTS UNIFORMLY DISTRIBUTED
RANDOM NUMBERS, WHICH HAVE GREATER THAN OR EQUAL PROBABILITY
WITH RESPECT TO THE GIVEN PROBABILITY FOR THAT TEST.TOTAL COUNTS
GIVE US SUCCESSFUL ITEM NUMBERS FOR EACH TEST. PROGRAM UPDATES
SEEDS AND CALLS SUBROUTINE RANNUM IN EACH ITERATION. THE PROGRAM
GENERATES 5000 SUCCESS VECTOR AND WRITES THEM TO AN OUTPUT FILE
CALLED SUSVECT.

o o e o e Ly e o T e e e e e ok e e o D S SR L S T e o L e e ek ik ra e e

VARIABLES

R AR A A A A A e e A A AR T R e A R A e R A AN A R A AN A R AR A AR RS

PSIM : PROBABILITY OF SUCCESS IN MANUFACTURER TEST.

PSITH : PROBABILITY OF SUCCESS IN TEMP. AND HUMIDITY TEST.

PSIV : PROBABILITY OF SUCCESS IN VIBRATION TEST

PSIA : PROBABILITY OF SUCCESS IN ALTITUDE TEST

NUM1 : COUNTER FOR MANUFACTURER TEST

NUM2 : COUNTER FOR TEMP. AND HUMIDITY TEST

NUM3 : COUNTER FOR VIBRATION TEST

NUM4 : COUNTER FOR ALTIUTDE TEST

X : BINOMIALLY DISTRIBUTED RANDOM NUMBER FOR MANUFACTURER
TEST

v : BINOMIALLY DISTRIBUTED KANDOM NUMBER FOR TEMP.AND

HUMUDITY TEST
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* Y : BINOMIALLY DISTRIBUTED RANDOM NUMBER FOR VIBRATION TEST
* : BINOMIALLY DISTRIBUTED RANDOM NUMBER FOR ALTITUDE TEST
* A : UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR MANUFACTURER

* TEST

* B : UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR TEMP.AND

* HUMIDITY TEST

* c : UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR VIBRATION TEST
* D : UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR ALTITUDE TEST
* ISEED : SEED NUMBER FOR MANUFACTURER TEST

* KSEED : SEED NUMBER FOR TEMP. AND HUMIDITY TEST

* LSEED : SEED NUMBER FOR VIBRATION TEST

* MSEED : SEED NUMBER FOR ALTITUDE TEST

- P G R e et e R e R L ik S L e L g R ey L R L R e e S e e o
* TYPE DECLARATION

REAL PSIM,PSITH,PSIV,PSIA,NUM1,NUM2,NUM3,NUM4,X(5000),V(5000)
+,Y(5000),2(5000),A,B,C,D
INTEGER ISEED,KSEED,LSEED,MSEED

* A A AR A AR A A A A A R A A A A AR A A A A A AR A A A A S A A A S A Add %y
* INITIALIZATION

ISEED = 45267

KSEED = 113234

LSEED = 435

MSEED = 1
* feffhdfhdhddhictiifhhiihhhihhdihdihddhkifhiihihhihidbhihdhiidhiik
* READING IEST PROBABILITIES OF BEING SUCCESSFUL IN EACH TEST

WRITE(*,*) 'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN
+ MANUFACTURER TEST'

READ (*,*) PSTM

WRITE(*,*) 'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN
+ TEMPERATURE AND HUMIDITY TEST'

READ (*,*) PSITH

WRITE(*,*) 'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN
+ VIBRATION TEST'

READ (*,*) PSIV
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WRITE(*,*) 'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN
+ ALTITIDE TEST'
READ (*,*) PSIA

* o T o L o TR T o Db e L i R T LR b D e L L e T R L e i e b et e 1
* OPENING AN OUTPUT FILE TO WRITE THE RESULTS
CALL EXCMS ('FILEDEF 16 DISK SUSVECT DATA Al')
* AR R A R R R A AT A A R A A A A A A A AR AN S SRR uw st
* GENERATION
DO 50 J=1,5000,1
* E e T L oy o e i b e T L e e e T o e e g e e e R e
* INITIALIZATION IN EACH ITERATION
NUM1= 0.0
NUM2= 0.0
NUM3= 0.0
NUM4= 0.0
* R o o R T T oy e R R i e Tt e S R L Dk L T oy L A L Sk S R g g e e e ik
* SEEDS UPDATATION IN EACH ITERATION
ISEED=ISEED+17
KSEED=KSEED+1356
LSEED=LSEED+1
MSEED=MSEED+789
* Frhdhddk edededelokeiofodhoddekdokhdk

* GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN MANUFACTURER TEST
DO 10 I=1,20,1
CALL RANNUM (1,ISEED,0.0,1.0,0.0,A)
IF ( A.LT.PSIM ) THEN

NUM1=NUM1+1
END IF
X(J) = NUM1
10 CONTINUE
* R i i e L L e e e R R T T LR R I R R R R X R LR e R R eI T e
* GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN TEMP. AND HUM. TEST

DO 20 K=1,20,1
CALL RANNUM (1,KSEED,0.0,1.0,0.0,B)
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20

30

40

50

IF ( B.LT.PSITH ) THEN
NUM2=NUM2+1
END IF
V(J) = NUM2
CONTINUE
R R e Tl i e R L T T it T e e R R R R i e e e e e
GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN VIBRATION TEST
DO 30 L=1,32,1
CALL RANNUM (1,LSEED,0.0,1.0,0.0,C)
IF ( C.LT.PSIV ) THEN
NUM3=NUM3+1
END IF
Y(J) = NUM3
CONTINUE
B T R o R T L e i Rkl ik bR X LR iy R ek LR LS e Rk e e
GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN ALTITUDE TEST
DO 40 M=1,20,1
CALL RANNUM (1,MSEED,0.0,1.0,0.0,D)
IF ( D.LT.PSIA ) THEN
NUM4=NUM4+1
END IF
Z(J) = NUM4
CONTINUE
dhihihkdhkdiohkhfhiichhdfdoiidhihidik ik ihkdkihhihikichkihihdkiihidihiiik

WRITING THE RESULTS TO AN OUTPUT FILE AS 4 TUPLE
WRITE (16,1) X(J),V(I),Y(J),Z(J)
FORMAT (1X,F12.7,4X,F12.7,4X,F12.7,4X,F12.7,4X)
CONTINUE
STOP
END

SUBROUTINE RANNUM(DISTN, SEED, RPARM1, RPARM2, IPARM, X)
Sddedodeddohoiodedodiohrieieiododoiokedriokdeiodolohekdoieioeiok ko doleieloledelololotelobdotook ok ko dokode ook

THIS SUBROUTINE IS A PART OF SIMUTIL FORTRAN WHICH IS WRITTEN
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BY DR. M. P. BAILEY. THIS SUBROUTINE PROVIDES AN INTERFACE WITH

THE LLRANDOMII ROUTINES PROVIDED IN THE NONIMSL LIBRARY. THE

PARAMETER REQUIRMENTS AND CALLING PROCEDURES ARE AS FOLLOWS:

DISTN = DISTRIBUTION TYPE YOU WANT TO SELECT AN INTEGER BETWEEN 1
AND 7.

SEED = THE RANDOM NUMBER SEED YOU WISH TO USE.

RPARM1, RPARM2, AND IPARM ARE REAL AND INTEGER PARAMETERS PASSED

TO THE ROUTINE WITH MEANINGS WHICH VARY WITH THE TYPE OF DISTRI_

BUTION YOU DESIRE.

X = THE RETURNED RANDOM NUMBER, IT IS ALWAYS REAL.

DISTRIBUTION NUMBERS AND THE ASSOCIATED PARM DEFINITIONS

1--UNIFORM ON THE INTERVAL RPARM1 TO RPARM2.

2--NORMAL WITH MEAN RPARM1 AND VARIANCE RPARM2.

3--EXPONENTIAL WITH RATE RPARM1.

4--COUCHY WITH A = RPARM1 AND B = RPARMZ.

5--GAMMA WITH SHAPE RPARM2 AND RATE RPARM1.

6--POISSON WITH RATE RPARM1.

7--GEOMETRIC WITH P = RPARMI1.

B R o

TYPE DECLARATION

REAL RPARM1,RPARM2,X,TEMP,VARIAT(1)

INTEGER DISTN, SEED, IPARM, N

FhdRAhhiRARRhithhh At h Rl h A hdeh doh ok dhh sk ok hdd®

IF (DISTN.LE.O.OR.DISTN.GT.8) THEN
WRITE(10, *) 'ILLEGAL CALL TO RANNUM, BAD DISTN’
STOP
ENDIF
GOTO (10, 20, 30, 40, 50, 60, 70), DISTN
F A AR AR AT AR AR AR A A e A A A A e b b bbb b bbb et
GENERATE A UNIFORM BETWEEN RPARM1 AND RPARM2
CONTINUE
IF (RPARM1 - RPARM2.EQ.0) THEN
WRITE(10, *) 'ILLEGAL EQUAL RPARMS IN RANNUM'
STOP
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20

30

40

ENDIF
IF (RPARM1.GT.RPARM2) THEN
TEMP = RPARM1

RPARM1 = RPARM2
RPARM2 = TEMP
ENDIF

CALL LRND(SEED, VARIAT, 1, 1, 0)
VARIAT(1) = RPARM1 + (RPARM2 - RPARM1) * VARIAT(1)
GOTO 80
L e S T T 2
GENERATE A NORMAL WITH MEAN RPARM1 AND STDDEV RPARM2
CALL LNORM(SEED, VARIAT, 1, 1, 0)
VARIAT(1) = (VARIAT(1) * RPARM2) + RPARM1
GOTO 80
Fhdehdddh b hddhihhh i kb driohkdokdohe ok doloddododohedododdoiododode ik dododoi bk drdododn ki ok
GENERATE AN EXPONENTIAL WITH RATE (1/MEAN) RPARM1
CONTINUE
IF (RPARM1.EQ.0) THEN
WRITE(10, *) 'ILLEGAL ZERO RATE IN RANNUM'
STOP
ENDIF
CALL LEXPN(SEED, VARIAT, 1, 1, 0)
VARIAT(1) = VARIAT(1) / RPARM1
GOTO 80
Fekdedrdrkirdrdidciriokroioiooieictookdoioidriololoiektolokeiololooiohdeiedofohielohdoiohdodoiohodokok + ok
GENERATE A COUCHY WITH A = RPARM1 AND B = RPARM2
CONTINUE
IF (RPARM2.LE.O) THEN
WRITE(10, *) 'ILLEGAL COUCHY SPREAD IN RANNUM, B = ' RPARM2
STOP
ENDIF
CALL LCCHY(SEED, VARIAT, 1, 1, 0)
VARIAT(1) = (VARIAT(1) * RPARM2) + RPARM1




50

60

70

80

GOTO 80

...............................................................

GENERATE GAMMA WITH SHAPE RPARM” AND RATE RPRAM1

CONTINUE

IF (RPARM1.LE.0) THEN
WRITE(10, *) 'ILLEGAL NONPOSITIVE GAMMA RATE IN RANNUM'
STOP

ENDIF

IF (RPARM2.LE.0) THEN
WRITE(10, *) 'ILLEGAL SHAPE PARAMETER IN RANNUM'
STOP

ENDIF

CALL LGAMA(SEED, VARIAT, 1, 1, 0, RPARM2)

VARIAT(1) = VARIAT(1) * (1.0 / RPARM1)

GOTO 80

D I I L T o o i e S Rt SO USEY DU CY DU TR D SO U DU JHRC THC TR SRR S S S SO VU ST T ST ST SOL YT SUC TUC T U THE SHT SUC SUP TUT SO SRCTRC T TSI S W T
FWIWRR ST ELETX 11y WIS EEd ~

GENERATE POISSON WITH RATE RPRAM1

CONTINUE

IF (RPARM1.LE.O) THEN
WRITE(10, *) 'ILLEGAL POISSON RATE IN RANNUM'
STOP

ENDIF

CALL LPOIS(SEED, VARIAT, 1, 1, 0, RPARM1)

GOTO 80

.........................................................

GENERATE GEOMETRIC WITH P = RPRAM1

CONTINUE

IF (RPARM1.LE.O) THEN
WRITE(10, *) 'ILLEGAL GEOM PROB IN RANNUM'
STOP

ENDIF

CALL LGEOM(SEED, VARIAT, 1, 1, 0, RPARM1)

GOTOC 80

CONTINUE
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X = VARIAT(1)
END

92




10

APPENDIX C. PROGRAM SORT

B T B B I O B B B L i i e T ot R e o X (i 8
R N TR O T T S i I Tl i T T T i T i T D e T i S e S e S T R e O e S D DR D D R o SO D D D D TR T D R T i D S

PROGRAM SORT

THIS 1S THE SORTING PROGRAM. PROGRAM USES BUBBLE SORT ALGORITHM.
PROGRAM READS ESTIMATED RELIABILITIES FROM AN INPUT FILE CALLED
RESULT. IT SORTS FROM SMALLEST TO LARGEST, AND WRITES IN TO AN
OUTPUT FILE CALLED FRESULT WITH 95 % LOWER CONFIDENCE BOUND.

AR AAELALETLEAFALAELEELLHAEEALERRELATRT00Rl0bAthdilddddddddidditst

VARIABLES
P o L o e T L o e e b T e it e i b g e e b e e e b
A : ESTIMATED RELIABILITY
FLAG : INDICATOR VARIABLE TAKES VALUE ' OF ' AND ' OFF '
e T o o o o i o i e Rk i e e e e ey e e e e ek e e e
TYPE DECLARATION
CHARACTER FLAG*3
REAL A(5000)
INTEGER I,N,J
FEARRTARAAAA AL AAR LR AAT AR TR R AR T TR A SR AR DT A A AR AL oAb ddhhddhhdnd sl
OPENING AN INPUT AND AN OUTPUT FILE
CALL EXCMS ('FILZDEF 9 DISK RESULT DATA Al')
CALL EXCMS ('FILEDEF 15 DISK FRESULT DATA Al')
HA AR A A A A AT A A A AR AR A A A NS A A A A AN A A AR A A AN A A A A dh bt b dh X
READING ESTIMATED RELIABILITIES
DO 10 I=1,5000
READ(9,*) A(I)
CONTINUE
A A A A A A A A A A A A A A A R A L S S A AR AR SR A AR A A S et
SORTING OPERATION
N=I-1
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40
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DO 30 I=N,2,-1

FLAG='OFF'
DO 20 J=1,I-1
IF (A(J).GT.A(J+1)) THEN
TEMP=A(J)
A(J)=A(J+1)
A(J+1)=TEMP
FLAG='ON'
END IF
CONTINUE
IF (FLAG.EQ.'OFF') THEN
GO TO 40
END IF
CONTINUE
CONTINUE
FhdhRhhhbhhhhbhhhhhrwdd
WRITING THE RESULTS IN ASCENDING ORDER TO OUTPUT FILE
DO 50 I=1,5000
WRITE (15,%*) A(I)
CONTINUE
WRITE (15,1) A(250)
FORMAT (///,15X,'95 % LOWER CONFIDENCE BOUND IS',1X,F12.7)
STOP
END

bhdhdddddhddhdhhhhbdbhddhidhddidiisiss
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APPENDIX D. PROGRAM INITIAL

atealeatenbectoatocte cle afesle el clo el stanto st ot b atenl bl bbb el oL b oL o b ol ol b el s el oo ol Lo nle sk o el b ol o el e ol b sttt o oDy
R T e T T e e T e I D T T T D T I e AR I D T D Ol v D S o T D T o S D D D A e T T T e T A e D T T D I e 1

PROGRAM INITIAL

THIS PROGRAM, CALCULATES INITIAL GUESSES FOR PARAMETERS IN
LOGLINEAR MODEL BY MEANS OF PROGRAM PARAM WHICH IS IN APPENDIX E.
PROGRAM SUPPLIES PARTIAL SUMS OF EXPECTATION, TO SOLVE EQUATIONS
IN PROGRAM PARAM. IT READS INTERACTIVELY NUMBER OF FAILURES IN
TESTS. PROGRAM WRITES RESULTS TO AN OUTPUT FILE CALLED EXPECT.

F T T S O K S O O O S L S O D I B O O S I B T O e O O R R e B R et L R e
PRI R RIS T T W i T T T T R L T T T L i i Tl T T T T L ot o T D o T T e T T o T T T o T I N N I T T T T T T

VARTABLES

BB T e L
FOoM : NUMBER OF FAILURES IN MANUFACTURER TEST

FOTH : NUMBER OF FAILURES IN TEMPERATURE AND HUMIDITY TEST

FQOV : NUMBER OF FAILURES IN VIBRATION TEST

FOA : NUMBER OF FAILURES IN ALTITUDE TEST

Pl : SUCCESS RATIO FOR MANUFACTURER TEST

P2 : SUCCESS RATIO FOR TEMPERATURE AND HUMIDITY TEST

P3 : SUCCESS RATIO FOR VIBRATION TEST

P4 : SUCCESS RATIO FOR ALTITUDE TEST

Q1 : FAILURE RATIO FOR MANUFACTURER TEST

Q2 : FAILURE RATIO FOR TEMPERATURE AND HUMIDITY TEST

Q3 : FAILURE RATIO FOR VIBRATION TEST

Q4 : FAILURE RATIO FOR ALTITUDE TEST

X1 : PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 1
X2 : PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 2
X3 : PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 3
X4 : PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 4

A e e e A e T A e R e A A A A AR A AR A A A AR Y RS

TYPE DECLARATION
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REAL FOM,FOTH,FOV,FOA,P1,P2,P3,P4,Q1,Q2,Q3,Q4,PROD,X1,X2,X3,X4

B R e a i a Ta L L e e R Ie i o R R e e L R R e R T R R e T L e e e e A e
OPENING AN OUTPUT FILE

CALL EXCMS ('FILEDEF 13 DISK EXPECT DATA Al')

B R e T e L L T R R e TR e R R e L e e e e e e e ek ke
READING NUMBER OF FAILURES IN EACH TEST INTERACTIVELY
WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN MANUFACTURER TEST'
READ(*,*) FOM

WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN TEMP.AND HUM.TEST'
READ(*,*) FOTH

WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN VIBRATION TEST'
READ(*,*) FOV

WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN ALTITUDE TEST'
READ(*,*) FOA

B R ki T o o S L N R R it R e e e R e e
CALACULATION OF SUCCESS RATIOS

P1=(20.0-FOM)/8.00

P2=(20.0-FOTH)/8.00

P3=(32.0-FOV)/8.00

P4=(20.0-FOA)/8.00

B a e e E e i ey ek e i e e e ek R e e oy e e T
CALCULATION OF FAILURE RATIOS

Q1=FOM/8.00

Q2=FOTH/8.00

Q3=F0V/8.00

Q4=F0A/8.00

Khfhhhdhtilh bkt hf Rt A R A A AR A AR A AARS A AR AT AR R h A Rd b Shd i h i bttt
CALCULATION PARTIAL SUMS OF EXPECTATION FOR PROGRAM PARAM
PROD=2.0*P3+2.0#Q3+2.0%P4+2.0%Q4

X1=4.0%P1+4.0%P2+PROD

X2=4.0*P1+4.0%Q2+PROD

X3=4.0*Q1+4.0*P2+PROD
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X4=4.0%Q1+4 . 0*Q2+PROD

B S L e R e S e
WRITING THE RESULTS TO AN OUTPUT FILE

WRITE (13,*) X1,X2,X3,X4

STOP

END
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APPENDIX E. PROGRAM PARAM

................................................................

PROGRAM PARAM
B R T o L L e S e e e e )
THIS IS THE PROGRAM TO CALCULATE PARAMETERS OF LOGLINEAR MODEL
WITH IMSY. SUBROUTINE. IT TAKES PARTIAL SUMS FROM PROGRAM INITIAL
AND SOLVES FOUR NONLINEAR EQUATIONS, WHICH HAVE FOUR UNKNOWNS.
THE PROGRAM USES AN IMSL SUBROUTINE CALLED DNEQNF TO SOLVE THIS
EQUATION.IT WRITES SOLUTIONS OF EQUATIONS TO OUTPUT FILE CALLED
PARAM DATA.

R R T S L L o e o e S e L L L Ly R R s L T D S T s o e T

VARIABLES

T o o o o e o L e Lt ot oy s S Ly oy e e T e e e R e e e S e e e S e

ITMAX : MAXIMUM ITERATION NUMBER.

N : PARAMETER

XGUESS : INITIAL GUESS FOR FOUR NONLINEAR EQUATIONS.
F : NONLINEAR EQUATIONS.

Fehedededeicdehfdrkdcfodfoirkodededdeofedode dodedodo Aok dodedededededededorn dokedodedodedededefoddioirbe oo o do b ok

TYPE DECLARATION
Feddddh Rk Rkt hhiohdfhfiidiifhdhkfhifihddichdhiihhihkhihdhidiih ik
PARAMETER (N=4)

REAL*8 ERRREL

INTEGER ITMAX,N

INTEGER K
REAL*8 FNORM,X(N),XGUESS(N)
EXTERNAL ACN

FhAEAEAAALE il S AR AR I TWIRTTITWRRXT DA IR AR R AR I T L DR O T D L O L I A IR L D o O DR IR S TR T

OPENING A FILE FOR WRITING RESULTS
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CALL EXCMS ('FILEDEF 9 DISK PARAM DATA A')

INITIAL GUESS
DATA XGUESS/3.5D0,3.5D0,3.5D0,3.5D0/

----------------------------------------------------------------

INITIALIZATION

ERRREL = 0.0001DO

ITMAX = 10000

CALLING OF IMSL SUBROUTINE

CALL DNEQNF ( ACN,ERRREL,N,ITMAX,XGUESS,X,FNORM)

B e e Rt R e b e e ke i b e S e LRk TR e ey e A A ek LT 27
RESULTS

WRITE (9,1) (X(K),K=1,N),FNORM

FORMAT( 'THE SOLUTION TO THE SYSTEM IS',/,'X=(',4F8.2,')',/,'WITH
+FNORM=",F8.2,//)

END

sl ahenloalealecloobe atontonto ahonte slo st choatosle oto ol clootonto cloche abontostocboadeo b ot stoslo sloabostoato sl cto chenontonkoatoslo skontoato sl alonl alo atoalunlo st sl ot olontont oL
T T I e I T T  a T a T U I T T T  TU TN IV N TV 93 0 PO JL 08 S0 90 U S8 % SV S8 O3 €8 PV U5 UL OV SN U SV SN SV N FU L GV I SN TV PN PN 63 43 03 SN 4% 9V SL IV Gy €v

SUBROUTINE ACN (X,F,N)

Tk ddhdhtdoh o doidoideioieiolodoio ok dotododododododoododtdoiadofolokododoiodoioleiok ookt bk
VARIABLES

X : INITIAL GUESS

F : NONLINEAR EQUATIONS

B R o e e
TYPE DECLARATION

REAL*8 X(N),F(N)

INTEGER N

T Rt o e L o e e

1 ST EQUATION
F(1)=DEXP(X(1))*(DEXP(X(2)+X(3)+X(4))+

+ (1/DEXP(X(2)+X(3)+X(4)))+

+ (DEXP(X(2)+X(3))/DEXP(X(4)))+

+ (DEXP(X(2)+X(4))/DEXP(X(3)))+(DEXP(X(3)

+ +X(4))/DEXP(X(2)))+(DEXP(X(2))/DEXP(X(3)+X(4)))+




+ (DEXP(X(3))/DEXP(X(2)

+ +X(3)))+(DEXP(X(4))/DEXP(X(2)+X(3))))-L0G(32.00)
* DR o R oy T oy Ty o Tyt e o oy L O o R R AR S T iy e e T LR LRy e e oy R e e R T
* 2 ST EQUATION

F(2)=DEXP(X(1)+X(2))*(DEXP(X(3)+X(4))+

+ (1/DEXP(X(3)+X(4)))+(DEXP(X(3))/

+ DEXP(X(4)))+(DEXP(X(4))/DEXP(X(3))))-L0G(23.00)
* R b e o o T e e Ty L b Ry e L L R L ok o e R D e e o e e L T
* 3 ST EQUATION

F(3)=DEXP(X(1)+X(3))*(DEXP(X(2)+X(4))+

+ (1/DEXP(X(2)+X(4)))+(DEXP(X(2))/

+ DEXP(X(4)))+(DEXP(X(4))/DEXP(X(2))))-L0G(23.00)
* R e e T e e R e ek e i e et oy e Ly L ey Ty e Ly Lk LR R T R O D R e Ly L Tk e e s e
* 4 ST EQUATION

F(4)=DEXP(X(1)+X(4))*(DEXP(X(2)+X(3))+

+ (1/DEXP(X(2)+X(3)))+(DEXP(X(2))/

+ DEXP(X(3)))+(DEXP(X(3))/DEXP(X(2))))-L0G(14.00)

RETURN

END
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APPENDIX F. PROGRAM LLMDEP

R o T o o T TN T o o T L L L T T R TR L e T e b e b e

PROGRAM LLMDEP

THIS IS THE FORTRAN PROGRAM TO CALCULATE THE RELIABILITY
OF PYROTECHNIC DEVICE. IT ASSUMES THAT THERE IS A DEPENDENCE
BETWEEN MANUFACTURER AND ENVIRONMENT TESTS. EXPECTATION-MAXIMIZA_
TION ALGORITHM IS USED IN THIS MODULE. ALGORITHM STARTS WITH
INITIAL GUESSES FOR PARAMETERS AND ESTIMATES EXPECTATIONS. IT
RECALCULATES CELL PROBABILITIES AND UPDATES EXPECTATIONS UNTIL
IT CONVERGES. AN ITERATIVE NEWTON AND RAPHSON PROCEDURE IS USED
DURING UPDATATION OF CELL PROBABILITIES. THIS PROCEDURE IS DONE
BY A SUBROUTINE NAMED UCPROB.

s dedodestak dododeodtmbodo oo dodo bR e heode
R kT R R oy e e o L e

T N e e  aferackon aukee
e iy i e T L L e e o e

VARIABLES

Fekkkdk S ]
FOM : NUMBER OF FAILURES IN MANUFACTURER TEST.

FOTH : NUMBER OF FAILURES IN TEMP. AND HUMIDITY TEST.
Fov : NUMBER OF FAILURES IN VIBRATION TEST.

FOA : NUMBER OF FAILURES IN ALTITUDE TEST.

MU : OVERALL MEAN.

LP1 : MEAN EFFECT OF MANUFACTURER TEST.

LP2 : MEAN EFFECT OF MANUFACTURER TEST.

LP3 : MEAN EFFECT OF MANUFACTURER TEST.

LpP4 : MEAN EFFECT OF MANUFACTURER TEST.

TETHA : TWO WAY INTERACTION TERMS

RHMLE : RELIABILITY OF DEVICE

MPPPP : CELL FREQUENCY WITH RESPECT TO TESTS RESULTS.

MPOPO : SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES
MANUFACTURER AND VIBRATION TEST.

101




* MP00O : SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES

* MANUFACTURER TEST.

* IP : INITIAL PROBABILITY VECTOR

* FP : UPDATED (FINAL) PROBABILITY VECTOR

* Y : CELL EXPECTATION VECTOR

* A,B,C : SOME TERMS TO MAKE THE CALCULATIONS EASY.

* EXPPPP : EXPECTED NUMBER OF DEVICES IN CELL WHICH

* HAS A RESULTANT VECTOR ( P P P P ) IN MANUFACTURER,

* TEMPERATURE, VIBRATION AND ALTITUDE TEST RESPECTIVELY
* FLAG : INDICATOR VARIABLE OF CONVERGENCE FOR PARAMETERS.

* RHMLE : ESTIMATED RELIABILITY OF PYROTECHNIC DEVICE.

* Bk S L R L T R e S
* TYPE DECLERATION

PARAMETER (K=10000)

LOGICAL FLAG(16)

INTEGER 1

REAL FOM, FOTH, FOV, FOA, LP1, LP2, LP3, LP4, TETHA
REAL MPPPP,MPPPF,MPPFP ,MPPFF,

+ MPFPP ,MPFPF ,MPFFP ,MPFFF,
+ MFPPP ,MFPPF ,MFPFP ,MFPFF,
+ MFFPP ,MFFPF ,MFFFP ,MFFFF
REAL EXPPPP(K) ,EXPPPF(K),EXPPFP(K),EXPPFF(K),
+ EXPFPP(K) ,EXPFPF(K) ,EXPFFP(K) ,EXPFFF(K),
+ EXFPPP(K) ,EXFPPF(K) ,EXFPFP(K),EXFPFF(K),
+ EXFFPP(K) ,EXFFPF(K) ,EXFFFP(K) ,EXFFFF(K)

REAL MP00O, MF000, MPP0OO, MPOPO, MPOOP, A, B, C
REAL IP(16,1),FP(16,1),X(16)

REAL Y(16)

COMMON / PROB / Y

* Fodedede e A R A e et e e R e e e e e e e e e e A A e e ARy

CALL EXCMS ('FILEDEF 15 DISK END DATA Al ')

* B e O
* INITIALIZATION
RHMLE = 0.0
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EPS = 0.001
DO 10 L=1,16
FLAG(L)=.FALSE.
CONTINUE
alesbstoslosde ot sl s aoatonleslecbiati b gl o sto sl st sto oot ol stoco ot steobo bbbt bbb o o e e B R R e B e A N ARk
READING THE NUMBER OF FAILURES IN EACH TEST INTERACTIVELY
WRITE(*,*)'PLEASE ENTER THE # OF FAILURES IN MANUFACTURER TEST'
READ(*,*) FOM
WRITE(*,*)'PLEASE ENTER THE # OF FAILURES IN TEMP. AND HUM. TEST'
READ(*,*) FOTH
WRITE(*,*) 'PLEASE ENTER THE # OF FAILURES IN VIBRATION TEST'
READ(*,*) FOV
WRITE(*,*) 'PLEASE ENTER THE # OF FAILURES IN ALTITUDE TEST'
READ(*,*) FOA
ook adoat ook destosle o sfostoatocosbioboslostoslesbosbonbo ool e AR A A AR XA AR XA F A AR A AT A DT AR XA AHARTENS
READING THE INITIAL GUESS FOR EACH CELL IN HYPOTHETICAL
CONTINGENCY TABLE
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPPP'
READ(*,*) MPPPP
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPPF'
READ(*,*) MPPPF
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPFP'
READ(*,*) MPPFP
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPFF'
READ(*,*) MPPFF
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFPP'
READ(*,*) MPFPP
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFPF'
READ(*,*) MPF"F
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFFP'
READ(*,*) MPFFP
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFFF'
READ(*,*) MPFFF
WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFPPP'
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READ(*,*) MFPPP
WRITE (*,*)'PLEASE ENTER
READ(*,%) MFPPF

WRITE (*,*)'PLEASE ENTER
READ(*,*) MFPFP

WRITE (*,*)'PLEASE ENTER
READ(*,*) MFPFF

WRITE (*,*)'PLEASE ENTER
READ(*,*) MFFPP

WRITE (*,*)'PLEASE ENTER
READ(*,*) MFFPF

WRITE (*,*)'PLEASE ENTER
READ(*,*) MFFFP

WRITE (*,*)'PLEASE ENTER
READ(*,*) MFFFF

INITIAL GUESS

INITIAL GUESS

INITIAL GUESS

INITIAL GUESS

INITIAL GUESS

INITIAL GUESS

INITIAL GUESS

FOR

FOR

FOR

FOR

FOR

FOR

FOR

MFPPF'

MFPFP'

MFPFF'

MFFPP'

MFFPF'

MFFFP'

MFFFF'’

Fehdhdhhihhddhdddhhddhihdchibhkidkihhfdkihhhidhhkdhdhhtdhdhdhiddhiditdrsr

CALCULATION OF INITIAL PROBABALITIES USING CELL FREQUENCIES

IP(1,1) = MPPPP/92.00
IP(2,1) = MPPPF/92.00
IP(3,1) = MPPFP/92.00
IP(4,1) = MPPFF/92.00
IP(5,1) = MPFPP/92.00
IP(6,1) = MPFPF/92.00
IP(7,1) = MPFFP/92.00
IP(8,1) = MPFFF/92.00
IP(9,1) = MFPPP/92.00
IP(10,1)= MFPPF/92.00
IP(11,1)= MFPFP/92.00
1P(12,1)= MFPFF/92.00
IP(13,1)= MFFPP/92.00

"

IP(14,1)= MFFPF/92.00
IP(15,1)= MFFFP/92.00
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IP(16,1)= MFFFF/92.00

L i g S LA e Ly g R e e e R LR g R e e e kS e e ey o

DETERMINATION OF INITIAL FREQUENCIES FOR LIKELIHOOD ESTIMATION

Y(1) = MPPPP
Y(2) = MPPPF
Y(3) = MPPFP
Y(4) = MPPFF
Y(5) = MPFPP
Y(6) = MPFPF
Y(7) = MPFFP
Y(8) = MPFFF
Y(9) = MFPPP

Y(10)= MFPPF

Y(11)= MFPFP

Y(12)= MFPFF

Y(13)= MFFPP

Y(14)= MFFPF

Y(15)= MFFFP

Y(16)= MFFFF
Fotedhtodededetodrddodrietololododriohotrieleiookebototolokokdololrio e drbodokohododrdoiodedokadedode dododododedeokok
CALL A SUBROUTINE WHICH UPDATES CELL PROBABILITIES USING NEWTON
AND RAPHSON PROCEDURE

CALL UCPROB( IP,FP )

Fededcdeddrkeiohehedodoikeiolokedoioiedolodcdedoh doketofoicioioindokdolnfekookiofkeiokdoioeob i doninkeoeoohk
UPDATATION OF CELL FREQUENCIES

MPPPP=FP(1,1)*92.00

MPPPF=FP(2,1)*92.00

MPPFP=FP(3,1)%*92.00

MPPFF=FP(4,1)*92.00

MPFPP=FP(5,1)*92.00

MPFPF=FP(6,1)*92.00

MPFFP=FP(7,1)%92.00

MPFFF=FP(8,1)*92.00

MFPPP=FP(9,1)*92.00
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MFPPF=FP(10,1)*92.00

MFPFP=FP(11,1)%*92.00

MFPFF=FP(12,1)*92.00

MFFPP=FP(13,1)*92.00

MFFPF=FP(14,1)%92.00

MFFFP=FP(15,1)%92.00

MFFFF=FP(16,1)%92.00

B et T g S e S
INITIAL EXPECTATIONS

EXPPPP(1)=MPPPP .
EXPPPF(1)=MPPPF

EXPPFP(1)=MPPFP

EXPPFF(1)=MPPFF

EXPFPP(1)=MPFPP

EXPFPF(1)=MPFPF

EXPFFP(1)=MPFFP

EXPFFF(1)=MPFFF

EXFPPP(1)=MFPPP

EXFPPF(1)=MFPPF

EXFPFP(1)=MFPFP

EXFPFF(1)=MFPFF

EXFFPP(1)=MFFPP

EXFFPF(1)=MFFPF

EXFFFP(1)=MFFFP

EXFFFF(1)=MFFFF
Frirtriririeioiricinkodniniroiekokoiotetoloooirioletotololodeielefefetodoohodoketoiciotokdoiekdolofofolodoloioolokdokok .
MPO00O=MPPPP+MPPPF+MPPFP+MPPFF+MPFPP+MPFPF+MPFFP+MPFFF
MF000=MFPPP+MFPPF+MFPFP+MFPFF+MFFPP+MFFPF+MFFFP+MFFFF
MPPOO=MPPPP+MPPPF+MPPFP+MPPFF
MPOPO=MPPPP+MPPPF+MPFPP+MPFPF
MPOOP=MPPPP+MPPFP+MPFPP+MPFFP

A=92.00-MPPOO

B=92.00-MPOPO
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C=92.00-MPOOP
B Rk e A S
NEXT EXPECTATIONS
DO 20 1=2,K
EXPPPP(1)=(20.00-FOM)*(MPPPP/MP000)+(20.00-FOTH)*(MPPPP/MPP00)+
+ (32.00-FOV)*(MPPPP/MPCOP0)+(20.00-FOA)*(MPPPP/MPOOP)
IF(ABS(EXPPPP(I)-EXPPPP(I-1)).LE.EPS) THEN
FLAG(1)=.TRUE.
END IF
EXPPPF(1)=(20.00-FOM)*(MPPPF/MP000)+(20.00-FOTH)*(MPPPF/MPP0O0 )+
+ (32.00-FOV)*(MPPPF/MPOPO)+FOA*(MPPPF/C)
IF(ABS(EXPPPF(I)-EXPPPF(I-1)).LE.EPS) THEN
FLAG(2)=.TRUE.
END IF
EXPPFP(1)=(20.00-FOM)*(MPPFP/MP000)+(20.00-FOTH)*(MPPFP/MPP0OO )+
+ FOV*(MPPFP/B)+(20.00-FCA)*(MPPFP/MPOOP)
IF(ABS(EXPPFP(I)-EXPPFP(I-1)).LE.EPS) THEN
FLAG(3)=.TRUE.
END IF
EXPPFF(I)=(20.00-FOM)*(MPPFF/MP000)+(20.00~-FOTH)*(MPPFF/MPP0OO)+
+ FOV*(MPPFF/B)+FOA*(MPPFF/C)
IF(ABS(EXPPFF(I)-EXPPFF(I-1)).LE.EPS) THEN
FLAG(4)=.TRUE.
END IF
EXPFPP(1)=(20.00-FOM)*(MPFPP/MPOOO)+FOTH*(MPFPP/A)+(32.00-FOV)*
+ (MPFPP/MPOP0)+(20.00-FOA)*(MPFPP/MPOOP)
IF(ABS(EXPFPP(I)-EXPFPP(I-1)).LE.EPS) THEN
FLAG(5)=.TRUE.
END IF
EXPFPF(1)=(20.00-FOM)*(MPFPF/MP000)+FOTH*(MPFPF/A)+(32.00-FOV)*
+ (MPFPF/MPOPO)+FOA*(MPFPF/C)
IF(ABS(EXPFPF(I)~EXPFPF(I1-1)).LE.EPS) THEN
FLAG(6)=.TRUE.
END IF
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EXPFFP(I)=(20.00-FOM)*(MPFFP/MP000)+FOTH*(MPFFP/A)+FOV*(MPFFP/B)+
+ (20.00-FOA)*(MPFFP/MPOOP)
IF(ABS(EXPFFP(I)-EXPFFP(I-1)).LE.EPS) THEN
FLAG(7)=.TRUE.
END IF
EXPFFF(I)=(20.00-FOM)*(MPFFF/MP000)+FOTH*(MPFFF/A)+FOV*(MPFFF/B)+
+ FOA*(MPFFF/C)
IF(ABS(EXPFFF(1)-EXPFFF(I-1)).LE.EPS) THEN
FLAG(8)=.TRUE.
END IF
EXFPPP(1)=FOM*(MFPPP/MF000 )+FOTH*(MFPPP/A)+FOV*(MFPPP/B)+FOA%*
+ (MFPPP/C)
IF(ABS(EXFPPP(I)-EXFPPP(I-1)).LE.EPS) THEN
FLAG(9)=.TRUE.
END IF
EXFPPF(I)=FOM*(MFPPF/MF000)+FOTH*(MFPPF/A)+FOV*(MFPPF/B)+FOA*
+ (MFPPF/C)
IF(ABS(EXFPPF(1)-EXFPPF(I-1)).LE.EPS) THEN
FLAG(10)=.TRUE.
END IF |
EXFPFP( I)=FOM*(MFPFP/MF000)+FOTH*(MFPFP/A)+FOV*(MFPFP/B)+FOA*
+ (MFPFP/C)
IF(ABS(EXFPFP(I)-EXFPFP(I-1)).LE.EPS) THEN
FLAG(11)=.TRUE.
END IF
EXFPFF(1)=FOM*(MFPFF/MF000)+FOTH* (MFPFF/A)+FOV*(MFPFF/B)+FOA*
+ (MFPFF/C)
IF(ABS(EXFPFF(I)-EXFPFF(I-1)).LE.EPS) THEN
FLAG(12)=.TRUE.
END IF
EXFFPP(I)=FOM*(MFFPP/MF000)+FOTH*(MFFPP/A)+FOV*(MFFPP/B)+FOA*
+ (MFFPP/C)
IF(ABS(EXFFPP(I)-EXFFPP(I-1)).LE.EPS) THEN
FLAG(13)=.TRUE.




END IF
EXFFPF(I)=FOM*(MFFPF/MF000)+FOTH* (MFFPF/A)+FOV~(MFFPF/B)+FOA*
(MFFPF/C)
IF(ABS(EXFFPF(1)-EXFFPF(I-1)).LE.EPS) THEN
FLAG(14)=.TRUE.
END IF
EXFFFP(I)=FOM*(MFFFP/MF000)+FOTH*(MFFFP/A)+FOV*(MFFFP/B)+FOA*
(MFFFP/C)
IF(ABS(EXFFFP(1)-EXFFFP(I-1)).LE.EPS) THEN
FLAG(15)=.TRUE.
END IF
EXFFFF(1)=FOM*(MFFFF/MF000)+FOTH*(MFFFF/A)+FOV*(MFFFF/B)+FOA*
(MFFFF/C)
IF(ABS(EXFFFF(I1)-EXFFFF(I-1)).LE.EPS) THEN
FLAG(16)=.TRUE.
END IF
I e e o o o oy o o s e Ly e T R L Y R R R
MPPPP = EXPPPP(I)
MPPPF = EXPPPF(I)
MPPFP = EXPPFP(I)
MPPFF = EXPPFF(I)
MPFPP = EXPFPP(I)
MPFPF = EXPFPF(I)
MPFFP = EXPFFP(I)
MPFFF = EXPFFF(I)
MFPPP = EXFPPP(I)
MFPPF = EXFPPF(I)
MFPFP = EXFPFP(I)
MFPFF = EXFPFF(I)
MFFPP = EXFFPP(I)
MFFPF = EXFFPF(I)
MFFFP = EXFFFP(I)
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MFFFF = EXFFFF(I)
Fehkdedrkdkhddkdkdodidrhhddohbdoolobdok i i obohhhk ki b hhd ik ddnh otk ik e dok ok
CHECK FOR THE STOPING CONDITION

IF( FLAG(1).AND.FLAG(2).AND.FLAG(3).AND.FLAG(4).AND.FLAG(5)

+ .AND.FLAG(6).AND.FLAG(7).AND.FLAG(8).AND.FLAG(9).AND.FLAG(10)

+ .AND.FLAG(11).AND.FLAG(12).AND.FLAG(13).AND.FLAG(14).AND.

+ FLAG(15).AND.FLAG(16)) THEN
R S L e S e T
CALCULATION OF FINAL EXPPPP (STOPING CONDITION IS MET)

RHMLE=EXPPPP(I1)/92.00
GO TO 30
END IF
B R e b et S e B e
STOPING CONDITION IS NOT MET. PROBABILITIES FOR THE NEXT
NEWTON AND RAPHSON PROCEDURE

IP(1,1) = MPPPP/92.00

IP(2,1) = MPPPF/92.00

IP(3,1) = MPPFP/92.00

IP(4,1) = MPPFF/92.00

IP(5,1) = MPFPP/92.00

TP(6,1) = MPFPF/92.00

IP(7,1) = MPFFP/92.00

IP(8,1) = MPFFF/92.00

IP(9,1) = MFPPP/92.00

IP(10,1)= MFPPF/92 .00

IP(11,1)= MFPFP/92.00

IP(12,1)= MFPFF/92.00

IP(13,1)= MFFPP/92.00

IP(14,1)= MFFPF/92.00

IP(15,1)= MFFFP/92.00

IP(16,1)= MFFFF/92.00

CALL UCPROB(IP,FP)

ekt dedehtr ARl bAoA A A AR A Ao e e e e e e it IR TR IRIF TR a T i i
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20

30
40

MPPPP=FP(1,1)*92.
MPPPF=FP(2,1)%92.
MPPFP=FP(3,1)%*92.
MPPFF=FP(4,1)%92.
MPFPP=FP(5,1)%92.
MPFPF=FP(6,1)%92.
MPFFP=FP(7,1)%92.
.00

MPFFF=FP(8,1)%92

MFPPP=FP(9,1)*92.

00
00
00
00
00
00
00

00

MFPPF=FP(10,1)%92.00
MEFPFP=rP(11,1)%92.00
MFPFF=FP(12,1)%92.00
MFFPP=FP(13,1)*92.00
MFFPF=FP(14,1)*52.00
MFFFP=FP(15,1)%92.00
MFFFF=FP(16,1)*92.00

D e o e L o g e A o R o o e e o o o L S AR L R Lk L R e S o S S T R T

MPOOO=MPPPP+MPPPF+MPPFP+MPPFF+MPYPP+MPFPF HMPFFP+MPFFF
MF000=MFPPP+MFPPF+MFPFP+MFPFF+MFFPP+MFFPF+MFFFP+MFFFF
MPPOO=MPPPP+MPPPF+MPPFP+MPPFF
MPOPO=MPPPP+MPPPF+MPFPP+MPFPF
MPOOP=MPPPP+MPPFP+MPFPP+MPFFP

A=92.00-MPP0OO
B=92.00~-MPOPO
C=92.00-MPOOP

i e e R e e e i S R S R S o e o

CONTINUE

T e s e ki e oy e oy L e e e oy LR e R e et Ly L T T e ko

WRITE(15,40)FOM,FOTH,FOV,FOA,RHMLE
FORMAT(/,5X,'-ASE',4X,F5.2,2X,F5.2,2%X,F5.2,2X,F5.2,/,15X,

+'MLE = ',F12.7)

R T X O e e N R Ly L e e e TR e e e e
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END

D R X e oy o o e oy D e Tk L D A e L T Ry L oy ey e L R LR Ly D e e e e e e e

SUBROUTINE UCPROB (IP,FP)

B S R bk Tk e e T )
THIS SUBROUTINE UPDATES CELL PROBABILITIES USING NEWTON AND

RAPHSON PROCEDURE WHICH IS DESCRIBED IN SAS .

B R S ot o e o o e o o o L o e e L R e S iy e e R L e R L T Lk e e e ke

VARIABLES

B L T L o o e e e o e
FOM : NUMBER OF FAILURES IN MANUFACTURER TEST.

FOTH : NUMBER OF FAILURES IN TEMP. AND HUMIDITY TEST.
Fov : NUMBER OF FAILURES IN VIBRATION TEST.

FOA :  NUMBER OF FAILURES IN ALTITUDE TEST.

MU : OVERALL MEAN.

LP1 : MEAN EFFECT OF MANUFACTURER TEST.

LP2 : MEAN EFFECT OF MANUFACTURER TEST.

LP3 : MEAN EFFECT OF MANUFACTUREF TEST.

LP4 : MEAN EFFECT OF MANUFACTURER TEST.

TETHA : TWO WAY INTERACTION TERMS

RHMLE : RELAIBILITY OF DEVICE

MPPPP : CELL FREQUENCY WITH RESPECT TO TESTS RESULTS.

MPOPO : SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES
MANUFACTURER AND VIBRATION TEST.

MP000 : SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES
MANUFACTURER TEST.

IP : INITIAL PROBABILITY VECTOR
FP : UPDATED (FINAL) PROBABILITY VECTOR
Y : CELL EXPECTATION VECTOR

A,B,C : SOME TERMS TO MAKE THE CALCULATIONS EASY.
EXPPPP : EXPECTED NUMBER OF DEVICES IN CELL WHICH
HAS A RESULTANT VECTOR ( P P P P ) IN MANUFACTURER,
TEMPERATURE, VIBRATION AND ALTITUDE TEST RESPECTIVELY
SIGN : INDICATOR VARIABLE OF CONVERGENCE FOR PARAMETERS.
RHMLE : ESTIMATED RELIABILITY OF PYROTECHNIC DEVICE.
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50

60
70

80

B Tt oy o o o oy e T R e e L R L L T R R I T L T T L e Rk

TYPE DECLERATION

LOGICAL SIGN(5)

REAL IP(16,1),FP(16,1)

RFAL FO0(15,1),F1(15,1),S(15,15),X(15,5),B0(5,1),
+B1(5,1),P10(15,1),PI1(15,1),C(5,5),6(5,1),SINV(15,15),F(15,1),
+PR|(15,1),PR2(5,1),PR3(15,5),PR4(5,5),SUM,LAST,PI01(16,1),LHE,
+LHEMAX ,RIP(15,1),PR5(15,5),CINV(5,5),DIF(15,1),PR6(5,1),LAMBDA,
+PI111(16,1),EPS,BLAST({5,1),PLAST(15,1),BNEW(5,1),FLAST(15,1)
+,U,XT(5,15) ,PR4INV(5,5)

REAL Y(16)

COMMON / PROB / Y

INTEGER I,J,K

KGR e e o o o o S o o e S o S o ek o S e o e e e e e e S S e T

INITIALIZATION

DO 50 I=1,5
SIGN(I)= .FALSE.
CONTINUE
DO 70 1=1,5
DO 60 J=1,5
S(1,J)=0.0
CONTINUE
CONTINUE
Fedhdhhddhhhdhihdihdhhbidhhdichhthhhddirddiddhhhhhidhhihhrihiris
READING THE DESIGN MATRIX
CALL EXCMS ('FILEDEF 9 DISK DESIGN INPUT Al')
DO 80 I=1,15
READ(9,*) X(I,1),X(I,2),X(I,3),X(1,4),X(I,5)
CONTINUE
REWIND 9
B R o o b ke L L T N L R i e e e e iy e o e e o e e
INVERSE OF VARIANCE AND COVERIANCE MATRIX FOR INITIAL BO
DO 100 I=1,15
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90
100

110

DO 90 J=1,15
IF(I.EQ.J) THEN
SINV(I,I)=(IP(I,1)-(IP(I,1)**2.0))*92.00
END IF
IF(I.NE.J) THEN
SINV(I,J)=(-IP(J,1))*IP(I,1)*92.00
END IF
CONTINUE
CONTINUE
R e o o o I 8 b i o o e e o L e e
LOGIT RESPONSE FUNCTIONS
DO 110 I=1,15
F(I,1) =ALOG(IP(I,1)/IP(16,1))

CONTINUE
Ffcdokdediohdekrioioiokdohoddricieliioiiciokdniiohoin ok foiooioiodoiokdofokdolnivk ok o iok e b idodek

THE TRANSPOZE OF THE DESIGN MATRIX
CALL TRNRR (15,5,X,15,5,15,XT,5)

KRtk ffokiiok ook diiokioiokdiciiokieioickiiciviokiciddkickdchkdoiohdickddkiddcickicik
MATRIX MULTIPLICATION PR1=(SINV*F)

CALL MRRRR (15,15,SINV,15,15,1,F,15,15,1,PR1,15)

Fhhdhhhhhh A Al A A A AR A A A Ao hfh i d bttt bl dodb bbb db b hd ik
MATRIX MULTIPLICATION PR2=(XT*PR1)

CALL MRRRR (5,15,XT,5,15,1,PR1,15,5,1,PR2,5)

Kok fhdokfdikdfdokicidickiodiokhiokiiohickkidiciokfoikkivkiviciciciokilokikik ki k
MATRIX MULTIPLICATION PR3=(SINV*X)

CALL MRRRR (15,15,SINV,15,15,5,X,15,15,5,PR3,15)

FeFededdefehdeifofede i i d i hde et dole i oo e dedefode bk ko dfedededodofededodede i dodo i
MATRIX MULTIPLICATION PR4=(XT*PR3)

CALL MRRRR (5,15,XT,5,15,5,PR3,15,5,5,PR4,5)

Ktk Rehffihik ikl h il A A A A h bt hdfodc ok dhiokdhedohdobdrd
INVERSE OF THE MATRIX MULTIPLICATION PR4=PR4INV

CALL LINRG (5,PR&4,5,PR4INV,5)
R L D )
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120

130

140

150

INITIAL ESTIMATION OF PARAMETERS BO

MATRIX MULTIPLICATION BO=(PR4INV*PR2)

CALL MRRRR (5,5,PR4INV,S,5,1,PR2,5,5,1,B0,5)

B o o e T o L o e e e R e b e L T ki el e o
FO= X * BO

CALL MRRRR (15,5,X,15,5,1,B0,5,15,1,F0,15)

............................

PR
By e o o e e R o R o R T R T e T b e L R R S e T

INITIAL PROBABILITIES PI0=(EXP(F0))
DO 120 I=1,15
PI0(I,1)=EXP(FO(I,1))
CONTINUE
SUM=0.0
DO 130 I=1,15
SUM=SUM+PIO(I,1)
CONTINUE
LAST=1.0/(1.0+SUM)

PROBABILITY MATRIX WHICH INCLUDES 16 VALUES PIO1
FOR THE INITIAL ESTIMATE OF LIKELIHOOD ESTIMATION
DO 140 I=1,15

PI01(I,1)=PIO(I,1)*LAST

CONTINUE
PI01(16,1)=LAST
Fdkdedekk i droriorieintriokdoi fokdok doke doioioiedododeiviokedok dododoloivieiedoke dolodolodokededokdeiokiokodeok

INITIAL LIKELIHOOD FOR NEXT ITERATION AT STEP BO
LHE=0.0
DO 150 I=1,16
LHE=LHE+Y(I)*ALOG(PIO1(I,1))
CONTINUE
LHEMAX=LHE
A A e R A A A A R A A A T A e A A A A A A A A A
REORGANIZED INITIAL PROBABILITIES FOR UPDATATION RIP
DO 160 I=1,15
RIP(I,1)=IP(I,1)
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160

170
180

190

CONTINUE
R T e e e ey T i i i T e e R T X R e L e Rk x  de a a e  r
FIRST ITERATION IN NEWTON AND RAPHSON METHOD
DO 170 I=1,15
DO 180 J=1,15
IF(I.EQ.J) THEN
SINV(I,I)=(PIO(I,1)-(PI0O(I,1)**2.0))*92.00
END IF
IF(I.NE.J) THEN
SINV(I,J)=(-PI0(J,1))*PI0(I,1)*92.00
END IF
CONTINUE
CONTINUE

o o e s ey o s oy ey e oy e AR S R e e R R

EhAAEEALETAAT AN AN

MATRIX MULTIPLICATION PR5=(SINV*X)
CALL MRRRR (15,15,SINV,15,15,5,X,15,15,5,PRS,15)
L o s T o e g S T T R e i R T e i e e e e
MATRIX MULTIPLICATION C=(XT*PRS5)
CALL MRRRR (5,15,XT,5,15,5,PR5,15,5,5,C,5)
Fehdtohdhdohidhkddhohhkiikififkhhiddfhdiohdihdiddokihhhdhddtit bbbt dh ik
INVERSE OF THE MATRIX C=CINV
CALL LINRG (5,C,5,CINV,5)
Fekdrfehkdohdololdciohdodolodkdohdoickdo ke fedcihdcfoiodokkoiokdfrfe o do oo fefh o dde ok dehdodeohhk
DO 190 I=1,15

DIF(I,1)= 92.00%(RIP(I,1)-PI0(I,1))
CONTINUE
FhffhfeRdeh Rt fe kb drh ok ek ik ok hdcddo koo ddohoh ok drk fobh b ddk dde ol
MATRIX MULTIPLICATION FOR G=(XT*DIF)
CALL MRRRR (5,15,XT,5,15,1,DIF,15,5,1,G,5)
Fehtehkdodrifeidddhdiohdiioh kb kirkhdhohkihfedohdodoichdedriobddod bl hd i idodt
MATRIX MULTIPLICATION (PR6= CINV*G)
CALL MRRRR (5,5,CINV,5,5,1,G,5,5,1,PR6,5 )
Fehdhdhiohhhhi b hh i h A AR d AR ok A oA h A hdied it h e d b dobde b ik

LAMBDA=1.0




*

200

210

220

230

240

DO 210 I=1,5

PR6(1,1)=PR6(I,1)*LAMBDA
CONTINUE
AR AR AR A AR A AR AR A A AR A A A A A AR AR R R A AR AR AR A A A A A A E AR A A A
INITIAL VALUE FOR Bl
DO 220 I=1,5

R{I,1)=B0(I,1)-PR6(I,1)
CONTINUE
B L L it e e e e
MATRIX MULTIPLICATION F1=(X*Bl)
CALL MRRRR (15,5,X,15,5,1,B1,5,15,1,F1,15)
AR AR AR A A A A A A AR A A A A A A A R A A A A AR R A AR R R A A AR SR A A AR R A AL
CALCULATION OF PROBABILITIES FOR Bl PI1=EFP(F1)
DO 230 I=1,15

PI1(I,1)=EXP(F1(I,1))
CONTINUE
FA AR R AR A AR R R R R AR A R R A AR A AR AR AR R AR A A AR A AR AR AR AR AR AR AN SRR AR
CALCULATION OF THE 16 TH PROBABILITY VALUE
SUM=0.0
DO 240 I=1,15
SUM=SUM+PI1(I,1)

CONTINUE
LAST=1.0/(1.0+SUM)

Fekfdeddhid

DO 250 I=1,15
PI11(1,1)=PI1(I,1)*LAST
CONTINUE
PI11(16,1)=LAST
Fhdkhhddihddktohddohdedidfoiohiciohiodofiriohdrioiofofoiokdoiiohkdoofokicolokici ook ok ok
INITIAL LIKELIHOOD ESTIMATION
LHE=0.0
DO 260 I=1,16
LHE=LHE+Y(I)*ALOG(PI11(I,1))
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260 CONTINUE

R o e e ey T i T e e e e T e e L e e e oy R e L e e e e L e S e

K=0
EPS=0.001
IF(LHE.LT.LHEMAX) THEN
K=K+1
IF(K.GT.10) THEN
DO 270 I=1,5
BLAST(I,1)=B0(I,1)
270 CONTINUE
DO 280 I=1,15
PLAST(I,1)=PI01(I,1)
280 CONTINUE
GO TO 490
END IF
LAMBDA=LAMBDA/2.0
GO TO 200
END IF
LHEMAX=LHE
A AT AT A A AT A AR AT AL A A AR AR AR AR R A A A AL AL AR A Ao h b bbb A A hddobtd
DO 290 I=1,5

IF(ABS(BO(I,1)-B1(I,1)).LE.EPS) THEN
SIGN(I)=.TRUE.
END IF
290 CONTINUE
Fededdedredokdvivichdoike kb fokedeloiokiok fokdoniolefoielodnirktoiodoiokdokodeiofdoieiodode bk ioiodokiok
CHECKING CRITERIAS
IF(SIGN(1).AND.SIGN(2).AND.SIGN(3).AND.SIGN(4).AND.SIGN(5)) THEN
DO 300 I=1,5
BLAST(I,1)=B1(I,1)
300 CONTINUE
DO 310 I=1,15
PLAST(I,1)=PI11(1,1)
310 CONTINUE
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330

340

350
360

GO TO 490
END IF
B L o T R S L O e e S
CRITERIAS ARE NOT MET THEN NEW ITERATIONS
DO 320 I=1,5
BLAST(I,1)=B1(I,1)
CONTINUE
DO 330 I=1,15
PLAST(I,1)=PI1(I,1)
CONTINUE

................................................................
..............................

DO 360 I=1,15
DO 350 J=1,15
IF(I.EQ.J) THEN
SINV(I,I)=(PLAST(I,1)-(PLAST(I,1)*%2.0)) *92.00
END IF
IF(I.NE.J) THEN
SINV(I,J)=(-PLAST(J,1))*PLAST(I,1)%*92.00
END IF
CONTINUE
CONTINUE
A A A A A A A A A AR A AR A AR AR AR A AN R A A A AN A A S A A A AR AN
MATRIX MULTIPLICATION PR3=(SINV*X)
CALL MRRRR (15,15,SINV,15,15,5,X,15,15,5,PR3,15)
FRAAR AR AT A hE R A A A AT A A AR A A S A AR R AL h bbbt dddhhh bbb dhdd
MATRIX MULTIPLICATION C=(XT*PR3)
CALL MRRRR (5,15,XT,5,15,5,PR3,15,5,5,C,5)
TR AR R R RTRRRT AR ARTARR BT AR AR AR LA AN TR LS h b hdh Al A b hhd bbb bhhidin
CALL LINRG ( 5,C,5,CINV,5 )
L R o e e e R TR Ty Ly e e b ek S T e T R e R s e e
DO 370 1=1,15
DIF(I,1)= 92.00%*(RIP(I,1)-PLAST(I,1))
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370

380

390

400

410

420

CONTINUE

B o o S ]
MATRIX MULTIPLICATION G=(XT*DIF)

CALL MRRRR (5,15,XT,5,15,1,DIF,15,5,1,G,5)

BB R R Bt e T
MATRIX MULTIPLICATION PR6=(CINV*G)

CALL MRRRR (5,5,CINvV,5,5,1,G,5,5,1,PR6,5)

R T T o e T R e T e T oy o L kT R e Dk R e T T R R T e e e e e e e e e e e

LAMBDA=1.0
T Rk T R S T SR R U T S e NS T
NEW PARAMETER ESTIMATES
DO 390 I=1,5

BNEW(I,1)=BLAST(I,1)-(LAMBDA*PR6(I,1))
CONTINUE
o L b e e S R e e SR e e
MATRIX MULTIPLICATION F1=(X*BNEW)
CALL MRRRR (15,5,X,15,5,1,BNEW,5,15,1,F1,15)
DO 400 I=1,15

PI1(I,1)=EXP(F1(I,1))
CONTINUE
B B e L o L e e
SUM=0.0
DO 410 I=1,15

SUM=SUM+PI1(I,1)

CONTINUE
LAST=1.0/(1.0+SUM)
Fditedriodrdrdktetodehetioioiedoloioriokododolokodorie ook dooloiokeeiokdoiolodok ok kadokfokdok ok dokok
DO 420 I=1,15

PI11(1,1)=PI1(1,1)*LAST
CONTINUE
PI11(16,1)=LAST

Fedkddrhhh ki doh bR i b A h b h PAERRTAAAAALLTALAAN S Sdd Ak

LIKELIHOOD ESTIMATION
LHE=0.0
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430

440

450

460

DO 430 I=1,16
LHE=LHE+Y(I)*ALOG(PI11(I1,1))
CONTINUE
B S e O
K=0
EPS=0.001
IF(LHE.LT.LHEMAX) THEN
K=K+1
IF(K.GT.10) THEN
GO TO 490
END IF
LAMBDA=LAMBDA/2.0
GO TO 380
END IF
LHEMAX =LHE
B R Rk
DO 440 I=1,5
IF(ABS(B1(I,1)-BLAST(I,1)).LE.EPS) THEN
SIGN(I)=.TRUE.
END IF
CONTINUE
B o e s ]
IF(SIGN(1) .AND.SIGN(2).AND.SIGN(3).AND.SIGN(4).AND.SIGN(5)) THEN
DO 450 I=1,5
BLAST(I,1)=BNEW(I,1)
CONTINUE
DO 460 I=1,15
PLAST(I,1)=PI11(I,1)
CONTINUE
GO TO 490
END IF
B R B R e
CRITERIAS ARE NOT MET THEN NEW ITERATIONS
DO 470 I=1,5
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470

480

490

500

510

520

BLAST(I,1)=B1(I,1)
CONTINUE
DO 480 I=1,15
PLAST(I,1)=PI11(I,1)
CONTINUE
GO TO 340

sl sle sdo o sdoade e sl ale e sloate shoateato bl ol st te ok closlu sl ke sl ot sl slente ol ol cto st sty el o sle o el o sl aliabo sl alslalaelctonloatontosto o sto sl slo ot clo v ot
TR TR I R TR e T e IR TR TR T L T T T e T D D T TR N T T T D S I N e Tl L e o B T o L D T D TR D T T o I T N T T T o

CONTINUE
B R R R R R L T T S e kT T i b b e i T o S e R R e T T e
MATRIX MULTIPLICATION FLAST=(X*BLAST)
CALL MRRRR (15,5,X,15,5,1,BLAST,5,15,1,FLAST,15) .
ek le kb dhlosdostosbatostogb oo e b A b A A A AR A A A TR R AT H AR Aol b A Aoh bt h At A Rhbhbhhbhidhds
CALCULATION OF FINAL PROBABILITIES
DO 500 I=1,15

PLAST(I,1)=EXP(FLAST(I,1))
CONTINUE
o e o Y ey p oy ek et R ke R L e Ly o e e e e g T
SUM=0.0
DO 510 I=1,15

SUM=SUM+PLAST(I,1)

CONTINUE
FhdRkhhdhdohd ikl il kb hfhhkihhdddhdhiidhhhhdbbdddhiidhdbdddhhiirs
LAST=1.0/(1.0+SUM)
DO 520 I=1,15

FP(I,1)=PLAST(I,1)*LAST
CONTINUE
FP(16,1)=LAST
RETURN
END .
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APPENDIX G. PROGRAM MLEB

................................................................

...............................................................
.......

THIS IS THE PROGRAM TO CALCULATE RELIABILITY OF THE DEVICE
WITH DEPENDENCE ASSUMPTION.PROGRAM ASSUMES THAT FAILED ITEM FROM
ANY OF ENVIRONMENT TESTS FAILS FROM MANUFACTURER TEST TOO. THIS
IS WORST CASE SCENARIO. IT READS NUMBER OF SUCCESSFUL ITEMS FROM
AN INPUT DATA CALLED SUSVECT. FINALLY THE PROGRAM WRITES RESULTS
TO AN OUTPUT FILE CALLED RESULT.

el testenltocteoteototoato ol o ol clo sl o ate o ole ol sl b oba sl el i stoabosto e o elo sl b elooloolo st el o sl oo atesto ol cleabo closkoadaotonle ot ole ol b sto el el oo ot
TR I T D T e T e e S T e T e T T T T I D o T o T i T T T T e i R R T D i o A R A I e T e TR TR T N T

VARIABLES

Fhdodriioddviedokkhdritoiriedoiloh ook il b b bbrioidek hdriehdodrbdok bk dolriolokiokiiokiok i hiok

SOM : NUMBER OF SUCCESSFUL ITEMS IN MANUFACTURER TEST

SOTH : NUMBER OF SUCCESSFUL ITEMS IN TEMP. AND HUMIDITY TEST

SOV : NUMBER OF SUCCESSFUL ITEMS IN VIBRATION TEST

SOA : NUMBER OF SUT"ESSFUL ITEMS IN ALTITUDE TEST

R1H : ESTIMATED PROBABILITY OF PASSING FROM MANUFACTURER TEST

R2H : ESTIMATED PROBABILITY OF PASSING FROM TEMPRATURE AND
HUMIDITY TEST

R3H : ESTIMATED PROBABILITY OF PASSING FROM VIBRATION TEST

R4H : ESTIMATED PROBABILITY OF PASSING FROM ALTITUDE TEST

RHMLE : ESTIMATED RELIABILITY OF ITEM AFTER EXPOSURE TO

SEVERAL ENVIRONMENT TESTS.
X : DUMMY VARIABLE
Foddedddeieieioinhdeiohiriniciodoieioichlniriokdodeiok fodcieiolodoedeoko lodedoiolododokelotododeoiohodode kodode i iokode
TYPE DECLARATION
REAL SOM(5000),SOTH(5000),S0V(5000),S0A(5000),X(4),R1H,R2H,R3H,
+ R4H,RHMLE(5000)
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10

INTEGER I
P i e A o e e e e L e e e e e e T e L e e ek e it e o
FILES FOR READING AND WRITING
CALL EXCMS ('FILEDEF 9 DISK SUSVECT DATA Al')
CALL EXCMS ('FILEDEF 17 DISK RESULT DATA Al')
READING NUMBER OF SUCCESS IN EACH TEST
DO 10 I=1,5000
READ(9,*) SOM(I),SOTH(I),SOV(I),SOA(I)
B R e L o T e e o e kb b LR DR T T b T e T e L T T L Lk e e D T
NUMBER OF SUCCESSES IN EACH TEST
X(1)= SOM(I)+SOTH(I)+SOV(I)+SOA(I)
X(2)= SOTH(I)
X(3)= SOV(I)
X(4)= SOA(I)
B o o L o T o R R ki g g R o oy T e L e T e o L e e e
CALCULATIONS SUCCESS PROBABILITIES IN EACH TEST
R1H= X(1)/184.0
R2H= X(2)/40.0
R3H= X(3)/64.0
R4H= X(4)/40.0
RHMLE(I)= R1H * R2H * R3H * R4H
B iy a e e e e e e i e e e e ey e
WRITING RESULTS TO AN OUTPUT FILE CALLED RESULT
WRITE (17,%) RHMLE(I)
CONTINUE
STOP
END
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APPENDIX H. PROGRAM BONUS

UPUOC TN SO S SN T OOR SO S TR SO S0 JUR TR DU SR SR DOSS TN SO T SA0C DO JHR SR SR SUIC T DK DUICTSPE RS S DU DAL SN SO ORC B ORI JUPEC SO U DU DU O SO DU SO JOU O YO0 U T URRC SO JC SO T YO S O 94
N I e T T I I T T Tl A T T T e T i S T i T i S T D L i I D T T N T T o T o T I oy S i N T i D T T T T e Tl T i 2

PROGRAM BONUS

................................................................

THIS IS THE PROGRAM TO CALCULATE BONUS PERCENTAGE OF ANY FIRM
WHOSE LONG RUN SUCCESS PROBABILITIES ARE KNOWN. IN THIS PROGRAM
IT USES 2000 SUCCESS VECTORS, WHICH ARE GENERATED BY RANVEC IN
APPENDIX B. THEY ARE GENERATED RY KNOWN LONG RUN PROBABILITIES
THE PROGRAM USES TWO DATA SETS.THEY ARE PRECALCULATED LCB'S SETS
.FIRST DATA REPRESENTS FIRST INSPECTION, SECOND DATA REPRESENTS
SECOND INSPECTION LOWER CONFIDENCE BOUNDS.

SUCCESS VECTORS REPRESENT OFFERED LOTS.IT HAS A DETERMINISTIC
BONUS LINE.PROGRAM CALCULATES LCB OF OFFERED LOT,WITH FIRST DATA
AND COMPARES IT WITH LCB OF BONUS LINE.IF FIRM LCB IS GRATER THAN
FIRM GETS BONUS. OTHERWISE FIRM HAS A CHANCE TO ONE MORE TRY. IN
SECOND TRY, PROGRAM CUMULATES SUCCESS VECTORS AND IT USES SECOND
DATA TO FIND OUT LCB OF CUMULATED LOT. AFTER THIS CALCULATION IT
COMPARES AGAIN. FINALLY IT COUNTS NUMBER OF TIMES THAT THE FIRM
GETS THE BONUS IN 1000 REPLICATIONS AND ESTIMATES BONUS PERCENT.
IT WRITES RESULTS TO AN OUTPUT FILE CALLED BONUS DATA.

B o e ke e e R e e e e e L Ry R e e e

VARIABLES
Fhdddekdetookdeiiolokdoeioicdokdoktofotokdekoboloiookoiofodoioifok b dofokikhodohdddhohdkdoiobh ik
SOM : NUMBER OF SUCCESS IN MANUFACTURER TEST.

SOTH : NUMBER OF SUCCESS IN TEMPERATURE AND HUMIDITY TEST.
Sov : NUMBER OF SUCCESS IN VIBRATION TEST.

SOA : NUMBER OF SUCCESS IN ALTITUDE TEST.

BLINE : LOWER CONFIDENCE BOUND OF BONUS LINE

LCB : LOWER CONFIDENCE BOUND

FILCB : LCB VALUES ARRAY IN FIRST INSPECTION
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10

SELCB

: LCB VALUES ARRAY IN SECOND INSPECTION

A,B,C,D : DIMENSIONS FOR USE OF LCB DATAS

BFI
BSI
BTOT
PRCT
COUNT
SIGN
FLAG

: NUMBER OF TIMES THAT FIRM GAT BONUS AFTER 1 ST INSP.
: NUMBER OF TIMES THAT FIRM GAT BONUS AFTER 2 ST INSP.
: TOTAL NUMBER OF TIMES THAT FIRM GAT BONUS.
BONUS PERCENT.
: COUNTER FOR 1000 REPLICATIONS.
INDICATOR OF ACCEPTANCE FOR FIRST INSPECTION
INDICATOR OF ACCEPTANCE FOR SECOND INSPECTION

B S S T O T S DO O T T T U S T O T S L B T B T O T O e T e . PYu DN Ju Dy NX VOT TR SR WOK T SO T SO0 DU 08 S e 1o Y
O I N o T T e T e T T N T T T L e T o T I I S T T T T TR L T T I TR T A I o i I N T T T T I D T T R T T T L T T T Ty

TYPE DECLARATION
LOGICAL SIGN(4),FLAG(4)
REAL SOM(2000),SOTH(2000),50V(2000),S0A(2000),BLINE,LCB,BFI,BSI,

+ BTOT,

FI1LCB(2,2,3,2),SELCB(3,3,5,3),A,B,C,D,PRCT,COUNT

INTEGER I,J,K,L

e e S T Ly g I L R L T L ey L et e e e e e e e

OPENING FILES FOR READING AND WRITING

CALL EXCMS ( ' FILEDEF 7 DISK SUCVECT DATA Al' )
CALL EXCMS ( ' FILEDEF 8 DISK FIRST DATA Al' )
CALL EXCMS ( ' FILEDEF 9 DISK SECOND DATA Al' )
CALL EXCMS ( ' FILEDEF 15 DISK BONUS DATA Al' )

Shddhdodefede bR Ry

INITIALIZATION

COUNT
BFI =
BSI =
BLINE
DO 10

1.0
.0
.0
0.9250000
I=1,4

[~ =]

SIGN(I)=.TRUE.
FLAG(I)=.TRUE.
CONTINUE

T A e e A e e R A e e A R R A A A A A R RN e e AR Y

READING FIRST INSPECTION LOWER CONFIDENCE BOUNDS FROM DATA FILE

DC 50

I=1,2
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20
30
40
50

60
70
80
90

DO 40 J=1,2
DO 30 K=1,3
DO 20 L=1,2
READ(8,*) FILCB(I,J,K,L)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
READING SECOND INSPECTION LOWER CONFIDENCE BOUNDS FROM DATA FILE
DO 90 I=1,3
DO 80 J=1,3
DO 70 K=1,5
DO 60 L=1,3
READ(9,*) SELCB(I,J,K,L)
CONTINUE
CONTINUE
CONTINUE

CONTINUE
et )

READING SUCCESS PROBABILITY OF FiRM IN EACH TEST
WRITE(*,*) 'WRITE THE PROBABILITY OF SUCCESS IN MANUFACTURER TEST'

READ (*,*) PSIM

WRITE(*,*)'WRITE THE PROBABILITY OF SUCCESS IN TEMPERATURE AND
+HUMIDITY TEST'

READ (*,*) PSITH

WRITE(*,*) 'WRITE THE PROBABILITY OF SUCCESS IN VIBRATION TEST'
READ (*,*) PSIV

WRITE(*,*) "WRITE THE PROBABILITY OF SUCCESS IN ALTITUDE TEST'
READ (*,*) PSIA

Fdeichhh okttt do ol dohohdbiotodokdotokdoiohiok i iodoiokdodiodook o idohoiok ok bk k
READING NUMBER OF SUCCESFUL ITEMS

FOR FIRST INSPECTION AND SECOND INSPECTION

DO 100 I=1,2000

127




READ(7,*) SOM(I),SOTH(I),SOV(I),SOA(I)
100  CONTINUE

* B o o e o o o S L)
- INSPECTIONS BEGIN

DO 120 N=1,2000,2
* B R L R e
* SUBSCRIPT DEFINITION FOR FIRST INSPECTION

A=INT(20.0-SOM(N))+1
B=INT(20.0-SOTH(N))+1
C=INT(32.0-SOV(N))+1
D=INT(20.0-SOA(N))+1
* Rtttk AR A AR AR R R R R AR Rk b b A hhEFdhkdkdkkfek ik ke kAo wekokdokdodiok ke dokoi kR
* CHECK FOR ACCEPTANCE OF FIRST OFFERED LOT
IF (A.GT.2) THEN
SIGN(1)=.FALSE.
END IF
IF (B.GT.2) THEN
SIGN(2)=.FALSE.
END IF
IF (C.GT.3) THEN
SIGN(3)=.FALSE.
END IF
IF (D.GT.2) THEN
SIGN(4)=.FALSE.
END IF
IF(.NOT.(SIGN(1).AND.SIGN(2).AND.SIGN(3).AND.SIGN(4))) THEN
SIGN(1)=.TRUE.
SIGN(2)=.TRUE.
SIGN(3)=.TRUE.
SIGN(4)=.TRUE.

GO TO 112
END IF
* Fedetdhdfdffdhdhhhdirhhhhbhhkiiohiohtdih it i hdhdh bbb bbb dh bbb iddd
* AFTER FIRST INSPECTION DETERMINATION OF LCB OF FIRM
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LCB=FILCB(A,B,C,D)
e T T T o T o o i i T I R i e L i LR e R T i L L i e e e
IS LOT WORTH WHILE FOR GETTING BONUS ?
IF ( LCB.GT.BLINE ) THEN
BFI=BFI+1.0
GO TO 110
END IF
SUBSCRIPT DETERMINATION FOR SECOND INSPECTION
A=A+INT(20.0-SOM(N+1))
B=B+INT(20.0-SOTH(N+1))
C=C+INT(32.0-SOV(N+1))
D=D+INT(20.0-SOA(N+1))
P o R T o R RN B R N R R R A N R RAR A R AR R w L L A LR ki b i b L T L T T e e T e L ke T e e
CHECKING RESULTS OF SECOND TEST SERIES ABOUT ACCEPTANCE
IF (A.GT.3) THEN
FLAG(1)=.FALSE.
END IF
IF (B.GT.3) THEN
FLAG(2)=.FALSE.
END IF
IF (C.GT.5) THEN
FLAG(3)=.FALSE.
END IF
IF (D.GT.3) THEN
FLAG(4)=.FALSE.
END IF
IF(.NOT.(FLAG(1).AND.FLAG(2).AND.FLAG(3).AND.FLAG(4))) THEN
FLAG(1)=.TRUE.
FLAG(2)=.TRUE.
FLAG(3)=.TRUE.
FLAG(4)=.TRUE.
GO TO 112
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l
END IF

* e o e o Ty e e s S e e e e e e e i i e e

b

AFTER SECOND INSPECTION DETERMINATION OF LCB
LCB=SELCB(A,B,C,D)
* KR o T o e R T e T L o i b T R i b L L TR e e e e T
* CHECKING FOR BONUS AFTER SECOND INSPECTION
IF ( LCB.GT.BLINE ) THEN
BSI=BSI+1
GO TO 112
END IF
* D o e o o o o o L L e L e L L T L R R IR I R Tk R T R
* COUNTING FOR CHECKING 1000 REPLICATIONS
110 COUNT = COUNT + 1.0
A=0.0
B=0.0
C=0.0
D=0.0
* e e e s e oy

* CHECKING FOR 1000 REPLICATIONS
IF (COUNT.GT.1000) THEN
GO TO 130
END IF
120 CONTINUE
* L L L S a T

* PERCENTAGE ESTIMATION OF GETING BONUS FOR FIRM A
130 BTOT = BFI+BSI
PRCT=BTOT/1000.0 -
* dedhdhibddohflohihiiofkdichfhdiohididichdohiiiodfddhhhdhdohdhddhdh it hdihhh®
* WRITING RESULTS '

WRITE (15,1)
1 FORMAT (//,16X,' BONUS PLAN SIMULATION FOR FIRM A ',2X)

WRITE (15,2)
2 FORMAT (16X,'**********************************',2X,//)

WRITE (15,3)
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w

11

12

13

14

FORMAT(4X,' FIRM A HAS FOLLOWING LONG RUN PROBABILITIES IN TESTS '
+,2X)

WRITE (15,4)

FORMAT(4X, ' #hssiidkssinkidihimdhhbfhibihbihihhibihfihififisiitis !
+,/,2X)

WRITE (15,5) PSIM,PSITH,PSIV,PSIA

FORMAT(4X, '"PROBABILITY OF SUCCESS IN MANUFACTURER TEST IS',2X,
+F8.6,//,4X, 'PROBABILITY OF SUCCESS IN TEMP. AND HUM. TEST IS',2X,
+F8.6,//,4X, 'PROBABILITY OF SUCCESS IN VIBRATION IS',2X,
+F8.6,//,4X, 'PROBABILITY OF SUCCESS IN ALTITUDE IS',F8.6,2X,//)
WRITE (15,6) BFI

FORMAT(4X, 'FIRM A GAT BONUS AFTER FIRST INSPECTION ',2X,F6.1,2X,
+'TIMES ', 2X)

WRITE (15,7)

FORMAT(4X , | #ridrdiiddiiddiihdhhd itk dbihh b bbbl bhh bl b iokohioik
HREkEes! 92X /)

WRITE (15,8) BSI

FORMAT(4X, 'FIRM A GAT BONUS AFTER SECOND INSPECTION ',2X,F6.1,2X,
+'TIMES',2X)

WRITE (15,9)

FORMAT(4X , ' rintirridrrinidririnkdhindoiohdoiadnbhohobdekodo ool o kool koo kol ko ook
it 92X, /)

WRITE (15,11) BTOT

FORMAT(4X, '"TOTALLY FIRM A GAT BONUS IN 1000 REPLICATIONS ', 2X,
+F5.1,2X, 'TIMES ', 2X)

WRITE (15,12)
FORMAT (4X , " #eiicicdoioioddoifohioiriciclioiofoiiodriniooiooiroiniof ok doieokoiinob ook

HRFFahE 22X /)

WRITE (15,13) PRCT

FORMAT(4X, '"GETTING BONUS PERCENTAGE OF FIRM A IS',1X,F6.3,2X)
WRITE (15,14)

FORMAT (4X, ' #ddichdicdicioiidohidokiiciiooibdolobdoiiokiddoioioiohioiok ik iokohiiis
HxFHKREE X 1/])

WRITE (15,15) BLINE
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15

16

FORMAT(4X,' BONUS LINE FOR FIRMS IS',1X,F6.4,2X)

WRITE (15,16)

FORM AT( 4X , B e s s R T R T e e oy e o R e e

hEREE 2% 1//)
STOP
END
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APPENDIX 1. 95 % LCB’S FOR DSBS ( EQUAL PROBABILITIES )

Table 18. 95 % LCB’S FOR DOUBLE SAMPLING BONUS SYSTEM

ECTOR 95 % LCB if};'CLTU('}lf 95 % LCB
(0000) 10000000 (0001) 0.9099184
(0002) 0.8706521 (0010) 0.9375849
(0011) 0.8808635 (0012) 0.8387057
(0020) 0.8968240 (0021) 0.8528913
(0022) 0.8141473 (0030) 08717731
(0031) 0.8281843 (0032) 0.7881665
(0040) 0.8422214 (0041) 0.8021229
(0042) 0.7645337 (0100) 0.9099184
(0101) 0.8548708 (0102) 0.8224738
(0110) 0.8808635 (0111) 0.8368122
(0112) 0.8010584 (0120) 0.8548636
(0121) 0.8131180 (0122) 0.7779465
(0130) 0.8294836 (0131) 0.7867751
(0132) 0.7541937 (0140) 0.8001103
(0141) 0.7624319 (0142) 0.7305543
(0200) 0.8657608 (0201) 0.8224728
(0202) 0.7905909 (0210) 0.8387058
(0211) 0.7996263 (0212) 0.7653871
(0220) 0.8154084 (0221) 0.7777317
(0222) 0.7414687 (0230) 0.7881665
(0231) 0.7541937 (0232) 0.7210189
(0240) 0.7624319 (0241) 0.7326533
(0242) 0.6996729 (1000) 0.9945652
(1001) 0.9099184 (1002) 0.8706521
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Table 19. 95 % LCB’S FOR DOUBLE SAMPLING BONUS SYSTEM
%‘CLTUSIE 95 % LCB {f}%ﬁ(‘}g 95 % LCB
(1010) 0.9375849 (1011) 0.8808635
(1012) 0.8369564 (1020) 0.8968240
(1021 0.8519021 (1022) 0.8111921
(1030) 0.8717731 (103 1) 0.8258852
(1032) 0.7881665 (1040) 0.8422214
(1041) 0.8001103 (1042) 0.7631623
(1100) 0.9099184 (1101) 0.8548708
(1102) 0.8224728 (1110) 0.8808635
(1111) 0.8368122 (1112) 0.8002886
(1120) 0.8528913 (1121) 0.8121204
(1122) 0.7768002 (1130) 0.8258852
(1131) 0.7862302 (1132) 0.7532073
(1140) 0.8001103 (1141) 0.7616678
(1142) 0.7295684 (1200) 0.8657608
(1201) 0.8224728 (1202) 0.7872553
(1210) 0.8387058 (1211) 0.7987179
(1212) 0.7626535 (1220) 0.8130434
(1221) 0.7758973 (1222) 0.7406143
(1230) 0.7860773 (1231) 0.7538874
(1232) 0.7200024 (1240) 0.7624319
(1241) 0.7309083 (1242) 0.6994067
(2000) 0.9891304 (2001) 0.9099184
(2002) 0.8657608 (2010) 0.9324048
(2011) 0.8808550 (2012) 0.8341966
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Table 20. 95 % LCB’S FOR DOUBLE SAMPLING BONUS SYSTEM
{,’E%TU(‘;& 95 % LCB i,‘;‘CLTUglf 95 % LCB
(2020) 0.8968240 (2021) 0.8499787
(2022) 0.8110244 (2030) 0.8717731
(2031) 0.8247706 (2032) 0.7845937
(204C) 0.8422214 (2041) 0.8001103
(2042) 0.7624320 (2100) 0.9099184
(2101) 0.8548708 (2102) 0.8224728
(2110) 0.8808530 (2111) 0.8362838
(2112) 0.8003395 (2120) 0.8519021
(2121) 0.8121204 (2122) 0.7750615
(2130) 0.8258852 (2131) 0.7846695
(2132) 0.7517914 (2140) 0.8001103
(2141) 0.7605843 (2142) 0.7284731
(2200) 0.8608695 (2201) 0.8222825
(2202) 0.7860733 (2210) 0.8341965
(2211) 0.7963909 (2212) 0.7626535
(2220) 0.8110244 (2221) 0.7750614
(2222) 0.7401020 (2230) 0.7845957
(2231) 0.7519901 (2232) 0.7188347
(2240) 0.7611454 (2241) 0.7295684
(2242) 0.6975686
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APPENDIX J. DOUBLE SAMPLING BONUS SYSTEM WITH EQUAL

PROBABILITIES

Table 21. DSBS (EQUAL PROBABILITIES) LCBFB = 0.825
LOWER CONFIDENCE BOUND FOR BONUS IS 0.825
PROB.'S | BONUS % PROB.'S BONUS % PROB.'S | BONUS %
0.9200 0.008 0.9375 0.030 0.9450 0.039
0.9500 0.079 0.9600 0.172 0.9700 0.351
0.9750 0.487 0.9800 0.632 0.9850 0.799
0.9%00 0.920 0.9950 0.982
DOUBLE SAMPLING BONUS SYSTEM
EQUAL TEST PROBABILITIES; LCBFB = 0.825
=l
5 3
2]
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&
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3t
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0.82 0.94 0.96 0.68
PROBABILITES
Figure 5. Double Sampling Bonus System With LCBFB = 0.825
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Bonus percentages are tabulated and plotted below with LCBFB 0.850

Table 22. DSBS (EQUAL PROBABILITIES) LCBFB = 0.830
LOWER CONFIDENCE BOUND FOR BONUS IS 0.850
PROB.’S BONUS % PROB.’S BONUS % PROB.’S BONUS %
0.9200 0.007 0.9375 0.025 0.9450 0.050
0.9500 0.063 0.9600 0.144 0.9700 0.293
0.9750 0.423 0.9800 0.565 0.9850 0.738
0.9900 0.887 0.9950 0.970
DOUBLE SAMPLING BONUS SYSTEM
EQUAL TEST PROBABILITIES; LCEFB = 0.850
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o
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Figure 6. Double Sampling Bonus System With LCBFB = 0.850
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Bonus percentages are tabulated and plotted below with LCBEB 0.875

Table 23. DSBS (EQUAL PROBABILITIES) LCBFB = 0.875
LOWER CONFIDENCE BOUND FOR BONUS 1S 0.875
PROB.'S BONUS % PROB.’S BONUS % PROB.’S BONUS %
0.9200 0.007 0.9375 0.023 0.9450 0.045
0.9500 0.057 0.9600 0.122 0.9700 0.236
0.9750 0.353 0.9800 0.487 0.9850 0.643
0.9900 0.799 0.9950 0.941
DOUBLE SAMPLING BONUS SYSTEM
EQUAL TEST PROBABILITIES; LCBFB = 0.875
o
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Figure 7. Double Sampling Bonus System With LCBFB = 0.875
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Bonus percentages are tabulated and plotted below with LCBFB 0.900

Table 24. DSBS (EQUAL PROBABILITIES) LCBFB = 0.900
LOWER CONFIDENCE BOUND FOR BONUS IS 0.900
PROB.’S BONUS % PROB.'S BONUS % PROB.'S BONUS %
0.9200 0.002 0.9375 0.010 0.9450 0.020
0.9500 0.027 0.9600 0.052 0.9700 0.138
0.9750 0.212 0.9800 0.319 0.9850 0.436
0.9900 0.671 0.9950 0.872
DOUBLE SAMPLING BONUS SYSTEM
EQUAL TEST PROBABILITIES; LCBFB = 0.900
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Figure 8. Double Sampling Bonus System With LCBFB = 0.990
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Bonus percentages are tabulated and ploted below with LCBFB 0.950

Table 25. DSBS (EQUAL PROBABILITIES) LCBFB = 0.950
LOWER CONFIDENCE BOUND FOR BONUS IS 0.950
PROB.S BONUS % PROB.’S BONUS % PROB.’S BONUS %
0.9200 0.002 0.9375 0.010 0.9450 0.018
0.9500 0.022 0.9600 0.045 0.9700 0.107
0.9750 0.163 0.9800 0.237 0.9850 0.362
0.9900 0.502 0.9950 0.695
DOUBLE SAMPLING BONUS SYSTEM
EQUAL TEST PROBABILITIES; LCBFB = 0.950
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Figure 9. Double Sampling Bonus System With LCBFB = 0.950
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Bonus percentages arc tabulated and ploted below with LCBFB 0.999

Table 26. DSBS (EQUAL PROBABILITIES) LCBFB = 0.999

LOWER CONFIDENCE BOUND FOR BONUS IS 0.999

PROB.'S BONUS % PROB.'S BONUS % PROB.S BONUS %
0.9200 0.002 0.9375 0.007 0.9450 0.010
’ 0.9500 0.011 0.9600 0.028 0.9700 0.067
« 0.9750 0.106 0.9800 0.166 0.9850 0.274
0.9900 0.407 0.9950 0.626

' DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILITIES; LCBFB = 0.999
at
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Figure 10. Double Sampling Bonus System With LCBFB = 0.999
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APPENDIX K. 95 % LCB’S FOR DSBS (DIFFERENT PROBABILITIES)

Bonus percentages are tabulated and ploted with different probabilities.
LCBFB = 0.825

Table 27. DSBS (DIFFERENT PROBABILITIES) LCBFB = 0.825

0.950 0.975 0.990 0.995
0.950 0.079 0.364 0.632 0.689
0.975 0.099 0.487 0.831 0.882
0.990 0.109 0.550 0.920 0.968
0.995 0.110 0.558 0.934 0.982

DOUBLE SAMPLING BONUS SYSTEM

LCBFB = 0.825
K
)
=1 1
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o
[+ -
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8“' o ——
o
ok
GEN

Figure 11. Double Sampling Bonus System With LCBFB = 0.825
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Bonus percentages are tabulated and ploted with different probabilities.
LCBFB = 0.850

Table 28. DSBS (DIFFERENT PROBABILITIES) LCBFB = 0.850

0.950 0.975 0.990 0.995
0.950 0.063 0.320 0.612 0.680
0.975 0.077 0.423 0.802 0.871
0.990 0.083 0.476 0.887 0.957
0.995 0.084 0.483 0.900 0.970

DOUBLE SAMPLING BONUS SYSTEM
LCBFB = 0.850

)

BONUS PERCENT

0.2 04 08 08

T T L] L] T T 17 ¥

99
TESTS PROBS

Figure 12. Double Sampling Bonus Systera With LCBFB = 0.850
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Bonus percentages are tabulated and ploted with different probabilities.

LCBFB = 0.875
Table 29. DSBS (DIFFERENT PROBABILITIES) LCBFB = 0.875
0.950 0.975 0.990 0.995
0.950 0.057 0.277 0.566 0.664
0.975 0.067 0.353 0.721 0.846
0.990 0.072 0.388 0.799 0.929
0.995 0.072 0.392 0.809 0.941
DOUBLE SAMPLING BONUS SYSTEM
LCBFB = 0.875
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Figure 13. Double Sampling Bonus System With LCBFB = 0.875
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Bonus percentages arc tabulated and ploted with different probabilities.
LCBFB = 0.900

Table 30. DSBS (DIFFERENT PROBABILITIES) LCBFB = 0.900

0.950 0.975 0.990 0.995
0.950 0.027 0.164 0.470 0.605
0.975 0.031 0.212 0.603 0.778
0.990 0.034 0.235 0.671 0.860
0.995 0.034 0.238 0.679 0.872

DOUBLE SAMPLING BONUS SYSTEM
LCBFB = 0.900

04 068 o038

BONUS PERCENT

0.2
T T T T T
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OTHER

Figure 14. Double Sampling Bonus System With LCBFB = 0.900
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Bonus percentages arc tabulated and ploted with different probabilities.

LCBFB = 0.950
Table 31. DSBS (DIFFERENT PROBABILITIES) LCBFB = 0.950
0.950 0.970 0.990 0.995
0.950 0.022 0.126 0.369 0.506
0.975 0.029 0.182 0.502 0.686
0.990 0.029 0.182 0.502 0.686
0.995 0.029 0.185 0.509 0.695
DOUBLE SAMPLING BONUS SYSTEM
LCBFB = 0.950
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Figure 15. Double Sampling Bonus System With LCBFB = 0.950
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Bonus percentages are tabulated and ploted with different probabilities.
LCBFB = 0.999

Table 32. DSBS (DIFFERENT PROBABILITIES) LCBFB = 0.999

0.950 0.970 0.990 0.995
0.950 0.011 0.057 0.174 0.229
0973 0.021 0.106 0.302 0.406
0.990 0.024 0.151 0.407 0.570
0.995 0.026 0.161 0.463 0.626

DOUBLE SAMPLING BONUS SYSTEM
LCBFB = 0.999

0.8

BONUS PERCENT
0.4

0.2

99
GovER TESTS PROBS

Figure 16. Double Sampling Bonus System With LCBFB = 0.999

147




tJ

(US )

LIST OF REFERENCES

Naval Weapons Support Center, Pyrotechnic Device Reliability Standardization,

Memorandum, Dated 10, 24, 1986

Moktar S. Bazaraa, C. M. Shetly Nonlinear Programming Theory And Algorithms

J. Wiley Series, 1979

Bradley Efron The Jackknife, the Bootstrap and Other Resampling Plans ,

CBMS-NSF Regional Conference Series In Applied Mathematics ( 38 ).
M.P.Bailey (1990) SIMUTIL FORTRAN Simulation Utulity Subroutines Unpub-
lished Lecture Notes, System Simulation , Department of Operation Resarch, Naval
Postgraduate School, Monterey, CA 93943-5000

Agresti Alan, Analysis of Ordinal Categotical Data John Wiley and Sons, 1984

Bergman, B., On Age Replacement and The Total Time on Test Concept, Scand. J.

Staustics, Vol. 6, 1979,

SAS User’s Guide Statistic Version , SAS Institute Inc. 1985 5 th Edition

Richard E. Barlow Frank Porchan, Statistical Theory of Reliability and Life Testing

Probability Models, published by To Begin With, 1981

148




10.

11

AS Hornby Oxford Advanced Learner’s Dictionary Of Current English , 3 rd Edi-
tion, 1974

Douglas C. Montgomery Introduction to Statistical Quality Control , John Wiley

and Sons, 1985

Acheson J. Duncan Quality Control And Industrial Statistics. , 5 th Edition,

Richard D. Irwin, Inc., 1986

Jhon O. Rawlings Applied Regression Analysis, A Research Tool , Wadsworth &
Brook Cole Advanced Books, 1988

149




